Math, asked by amit4740, 8 months ago

is 1/a²- 1/b² divisible by (a-b)???​

Answers

Answered by mysticd
0

 \frac{\Big( \frac{1}{a^{2} }- \frac{1}{b^{2}}\Big) }{ (a-b) }

 = \frac{ \frac{(b^{2} - a^{2})}{a^{2} b^{2} }}{ (a-b) }

 =\frac{(b+a)(b-a)}{a^{2}b^{2} (a-b)}

 = \frac{-(b+a)\cancel {(a-b)}}{a^{2}b^{2} \cancel {(a-b)}}

 = \frac{-(a+b)}{a^{2}b^{2}}

Therefore .,

 \red{ \Big( \frac{1}{a^{2}} - \frac{1}{b^{2}}\Big) } \: is \green { \: divisible \: by \: (a-b ) }

•••♪

Answered by Anonymous
2

{\tt{\purple{\underline{\underline{\huge{Answer:}}}}}}

 \large{\dfrac{\Big( \dfrac{1}{a^{2} }- \dfrac{1}{b^{2}}\Big) }{ (a-b) }}

 \sf\implies  \dfrac{ \dfrac{(b^{2} - a^{2})}{a^{2} b^{2} }}{ (a-b) }

 \sf\implies \dfrac{(b+a)(b-a)}{a^{2}b^{2} (a-b)}

 \sf\implies \dfrac{-(b+a)\cancel {(a-b)}}{a^{2}b^{2} \cancel {(a-b)}}

 \sf\implies \dfrac{-(a+b)}{a^{2}b^{2}}

\large{\boxed{\bf{ \Big( \frac{1}{a^{2}} - \frac{1}{b^{2}}\Big) } \: is  \: divisible \: by \: (a-b )}}

_________________________

Similar questions