Math, asked by pk172073, 6 months ago

is
1. The simplified for
(13)3
(13
a) (13)
b) (13)
c) (13)
d) (13)​

Attachments:

Answers

Answered by cynddiab
0

Given \frac{13^{1/5}}{13^{1/3}}

       = 13^{1/5 -1/3}            ........a^m/a^n= a^(m-n)

       = 13^{-2/15}

Option C is correct

Please mark as brainliest if the answer helped

Answered by MrImpeccable
4

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Simplify:

  •  \dfrac{13^{\frac{1}{5}}}{13^{\frac{1}{3}}}

Solution:

 \implies \dfrac{13^{\frac{1}{5}}}{13^{\frac{1}{3}}} \\\\\implies 13^{\frac{1}{5} - \frac{1}{3}} \\\\\implies 13^{\frac{3 - 5}{15}} \\\\\bold{\implies 13^{\frac{-2}{15}} }

Formula Used:

  •  \dfrac{a^m}{a^n} = a^{m-n}

Learn More:

 \begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions