Math, asked by saryka, 2 months ago

Is 1¹¹ + 2¹¹ + 3¹¹ + 4¹¹ + 5¹¹ divisible by 5? Justify.​

Answers

Answered by mathdude500
113

\large\underline{\sf{Solution-}}

We know,

★ A natural number is divisible by 5 if its unit digit is either 0 or 5.

★ So, in order to prove that 1¹¹ + 2¹¹ + 3¹¹ + 4¹¹ + 5¹¹ divisible by 5.

★ We have to just prove that unit digit of 1¹¹ + 2¹¹ + 3¹¹ + 4¹¹ + 5¹¹ is either 0 or 5.

Now,

Consider,

\rm :\longmapsto\: {1}^{11}

\rm :\longmapsto\:Its \: unit \: digit \: is \: always \: 1

Consider,

\rm :\longmapsto\: {2}^{11}

★ We check the cyclicity of 2 for unit digit.

\rm :\longmapsto\: {2}^{1} \: ends \: with \: 2

\rm :\longmapsto\: {2}^{2} \: ends \: with \: 4

\rm :\longmapsto\: {2}^{3} \: ends \: with \: 8

\rm :\longmapsto\: {2}^{4} \: ends \: with \: 6

\rm :\longmapsto\: {2}^{5} \: ends \: with \: 2

★ It implies after 4, its start repetition.

So,

\rm :\longmapsto\: {2}^{11} \: ends \: with \: 8

Consider

\rm :\longmapsto\: {3}^{11}

★ We check the cyclicity for 3

\rm :\longmapsto\: {3}^{1} \: ends \: with \: 3

\rm :\longmapsto\: {3}^{2} \: ends \: with \: 9

\rm :\longmapsto\: {3}^{3} \: ends \: with \: 7

\rm :\longmapsto\: {3}^{4} \: ends \: with \: 1

\rm :\longmapsto\: {3}^{5} \: ends \: with \:  3

★ It implies after 4, it starts repeatedly.

So,

\rm :\longmapsto\: {3}^{11}  \: ends \: with \: 7

Consider

\rm :\longmapsto\: {4}^{11}

★ Now, we check the cyclicity of 4

\rm :\longmapsto\: {4}^{1}  \: ends \: with \: 4

\rm :\longmapsto\: {4}^{2}  \: ends \: with \: 6

\rm :\longmapsto\: {4}^{3}  \: ends \: with \: 4

★ It implies cyclicity of 4 is 2.

★ It means, after 2 is starts repeating.

So,

\rm :\longmapsto\: {4}^{11}  \: ends \: with \: 4

Consider,

\rm :\longmapsto\: {5}^{11}

\rm :\longmapsto\:Its \: unit \: digit \: is \: always \: 5

Hence,

★ The sum of unit digits of 1¹¹ + 2¹¹ + 3¹¹ + 4¹¹ + 5¹¹ is

\rm \:  =  \:  \: \:1 + 8 + 7 + 4 + 5

\rm \:  =  \:  \: \:25

\rm :\implies\: {1}^{11} +  {2}^{11} +  {3}^{11} +  {4}^{11} +  {5}^{11} \: always \: ends \: with \: 5

\bf\implies\:{1}^{11}+{2}^{11}+{3}^{11} +{4}^{11}+{5}^{11} \:is\:divisible\:by\:5

Similar questions