Math, asked by zahirakapoor817, 8 months ago

is √2x^2+7x+5√2=0 a quadratic equation if yes then give reason


Pls solve and then give the answer​

Answers

Answered by anvesharanjan1310
0

Answer:

Yes

Step-by-step explanation:

Yes this is a quadratic equation because the highest power of any quadratic equation is always 2.

Answered by rumig0720
0

{ \sqrt{2}{x}^{2} } + 7x +  5 \sqrt{2}  = 0 \\ x =  \frac{ - b \sqrt[ +  - ]{ {b}^{2} - 4ac } }{2a}  \\  =  \frac{ - 7 \sqrt[ +  - ]{ {( - 7)}^{2}  - 4 \times  \sqrt{2}  \times 5 \sqrt{2} } }{2 \times  \sqrt{2} }  \\  =   \frac{ - 7 \sqrt[ +  - ]{49 - 40} }{2 \sqrt{2} } \\  =  \frac{ - 7 \sqrt[ +  - ]{9} }{2 \sqrt{2} }   \\  =  \frac{ - 7( +  -)3}{2 \sqrt{2} } \\   \\ so \:  \:  \:  \:  \:  \:  \alpha  =  \frac{ - 7 + 3}{2 \sqrt{2} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{ - 4}{2 \sqrt{2} }  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{ - 2 \sqrt{2} }{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  -  \sqrt{2}  \\  \\ and \:  \:  \:  \:  \:  \:  \beta  =    \frac{ - 7 - 3}{2 \sqrt{2} }  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =   \frac{ - 10 \sqrt{2} }{2 \sqrt{2} \times  \sqrt{2}  }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{ - 5 \sqrt{2} }{2}

that is your answer.

Similar questions