Math, asked by Kashusingh610, 10 months ago

is 4 x + 3 Y upon 4 x minus 3 Y = 27 upon 4 use the property properties to find the value of 2 x square - 11 y square upon 2 X square + 11 y square ​

Answers

Answered by sanjeevk28012
0

Answer:

The value of fraction \dfrac{2x^{2} - 11y^{2} }{2x^{2}+11y^{2} } is \dfrac{-75806}{110402}  

Step-by-step explanation:

Given as :

The fraction are

\dfrac{4x+3y}{4x-3y}  = \dfrac{27}{4}

Or, 4 ( 4 x + 3 y ) = 27 ( 4 x - 3 y )

or, 16 x + 12 y = 108 x - 81 y

or, 12 y + 81 y = 108 x - 16 x

or, 93 y = 92 x

∴  \dfrac{x}{y}  = \dfrac{93}{92}                  ............1

Again

\dfrac{2x^{2} - 11y^{2} }{2x^{2}+11y^{2} }   = \dfrac{2(\dfrac{x}{y} )^{2} - 11 }{2(\dfrac{x}{y} )^{2}+11 }

Or,               = \dfrac{2(\dfrac{93}{92} )^{2} - 11 }{2(\dfrac{93}{92} )^{2}+11 }

Or,              = \dfrac{17298 - 93104}{17298+93104}

Or,              = \dfrac{-75806}{110402}

So, The value of fraction \dfrac{2x^{2} - 11y^{2} }{2x^{2}+11y^{2} } =  \dfrac{-75806}{110402}

Hence,  The value of fraction \dfrac{2x^{2} - 11y^{2} }{2x^{2}+11y^{2} } is \dfrac{-75806}{110402}  Answer

Similar questions