Math, asked by thugbro007, 11 months ago

is A,B and C are the interior angles of a triangle , prove that
sec A-B+C / 2 = cosec B​

Attachments:

Answers

Answered by shadowsabers03
4

Here A, B and C are interior angles of a triangle.

Since the sum of interior angles of any triangle is 180°, we have,

\longrightarrow\sf{A+B+C=180^o}

Or,

\longrightarrow\sf{A+C=180^o-B\quad\quad\dots(1)}

So,

\longrightarrow\sf{\sec\left(\dfrac{A-B+C}{2}\right)=\sec\left(\dfrac{A+C-B}{2}\right)}

From (1),

\longrightarrow\sf{\sec\left(\dfrac{A-B+C}{2}\right)=\sec\left(\dfrac{180^o-B-B}{2}\right)}

\longrightarrow\sf{\sec\left(\dfrac{A-B+C}{2}\right)=\sec\left(\dfrac{180^o-2B}{2}\right)}

\longrightarrow\sf{\sec\left(\dfrac{A-B+C}{2}\right)=\sec\left(90^o-B\right)}

But,

  • \sf{\sec(90^o-x)=\csc x}

Then,

\longrightarrow\sf{\underline{\underline{\sec\left(\dfrac{A-B+C}{2}\right)=\csc B}}}

Hence Proved!

Answered by Anonymous
1

JJIkksjsis9sowjwbiaiahwhwbwoahsbwnakuahwkaisushwnsk

Similar questions