is act! sa factors a
factors Ofesthe polynomial
0c 1997 + x
ta
Answers
Step-by-step explanation:
this question's answer is 54
Required Answer:-
Given:
- x + y + z = 6.
- x² + y² + z² = 18
To Find:
- The value of x³ + y³ + z³ - 3xyz
Solution:
Note the identity to be used here:
→ x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - xy - yz - xz)
→ (x + y + z)² = x² + y² + z² + 2(xy + yz + xz)
Now, let's solve.
Given that,
→ x + y + z = 6
→ x² + y² + z² = 18
→ (x + y + z)² = 6² [Squaring both sides]
→ x² + y² + z² + 2(xy + yz + xz) = 36
∵ x² + y² + z² = 18
→ 18 + 2(xy + yz + xz) = 36
→ 2(xy + yz + xz) = 18
→ xy + yz + xz = 9
Therefore,
x³ + y³ + z³ - 3xyz
= (x + y + z)(x² + y² + z² - xy - yz - xz)
= (x + y + z)[x² + y² + z² - (xy + yz + xz)]
= 6 × (18 - 9)
= 6 × 9
= 54.
→ x³ + y³ + z³ - 3xyz = 54
Note: If you don't know the first identity, solve this problem in this way, (given below)
Given that,
→ x + y + z = 6
→ x² + y² + z² = 18
So,
x³ + y³ + z³ - 3xyz
= (x³ + y³) + z³ - 3xyz
Now, we know that,
→ x³ + y³ = (x + y)³ - 3xy(x + y)
Therefore,
= (x³ + y³) + z³ - 3xyz
= (x + y)³ - 3xy(x + y) + z³ - 3xyz
= (x + y)³ + z³ - 3xy(x + y) - 3xyz
= [(x + y)³ + z³] - 3xy(x + y + z)
Applying the same identity here, we get,
= (x + y + z)[(x + y)² - z(x + y) + z²] - (x + y + z) × (3xy)
= (x + y + z)[(x² + 2xy + y² - xy - yz + z²) - 3xy]
= (x + y + z)[x² + 2xy - 3xy + y² + z² - xy - yz]
= (x + y + z)[x² + y² + z² - xy - yz - xz]
= 6 × [18 - (xy - yz - xz)]
Now,
→ (x + y + z)² = 6² (Squaring both sides)
→ x² + y² + z² + 2(xy + yz + xz) = 36
∵ x² + y² + z² = 18
→ 18 + 2(xy + yz + xz) = 36
→ 2(xy + yz + xz) = 18
→ xy + yz + xz = 9
Therefore,
6 × [18 - (xy + yz + xz)]
= 6 × (18 - 9)
= 6 × 9
= 54
Answer:
- x³ + y³ + z³ - 3xyz = 54.