Math, asked by ranbiraujla2744, 1 year ago

Is an ap of 50 terms the sum of the first 10 term is 210 and the sum of first last 15 terms is 2 and 2565 find the ap?

Answers

Answered by Khushi0511
7
Hlo User!!
here is your ans..
Mark as Brainliest..


Let the first term be (a) and (d) be the common difference .
=) Sum of the first n terms is given by
Sn = n/2 {2a + (n - 1)d}
On Putting n = 10 =)
S₁₀ = 10/2 {2a + (10 - 1)d}

210 = 5 (2a + 9d) 

2a + 9d = 210/5

2a + 9d = 42 ..(1)

Sum of the last 15 terms is 2565
=) Sum of the first 50 terms - sum of the first 35 terms = 2565
S₅₀ - S₃₅ = 2565
=) 50/2 {2a + (50 - 1)d} - 35/2 {2a + (35 - 1)d} = 2565
25 (2a + 49d) - 35/2 (2a + 34d) = 2565

=)5 (2a + 49d) - 7/2 (2a + 34d) = 513

=) 10a + 245d - 7a + 119d = 513

=) 3a + 126d = 513 

=) a + 42d = 171 ........(2)

Multiply the equation (2) with 2, we get :-
2a + 84d = 342 .........(3)

Subtracting (1) from (3) we get :-
 
 =)d= 4
Now, substituting the value of d in equation (1)
2a + 9d = 42
2a + 9×4 = 42
2a = 42 - 36
2a = 6
a = 3
So, the required AP is 3, 7, 11, 15, 19, 23, 27, 31, 35, 39 .
Answered by Anonymous
1

   \underline{  \underline{\bf{Answer}}}  :  -  \\   \implies \: 3, \: 7 \:, 11 \: ,15, \: ..........,199 \\ \\   \underline{\underline{ \bf{Step - by  - step \: explanation \: }}} :  -  \\  \\

According to the question:-

 \bf{sum \: of \: first \: 10 \: terms \:( s_{10})   = 210} \\   210 =  \frac{10}{2} \bigg (2a + (101)d \bigg) \: \\   \\ 2a + 9d = 42 \: .........(1)\\   \\ \bf{sum \: of \: last \: 15 \: terms \: ( s_{15})= 2565} \\ \\  s_{50} -s_{35} = 2565  \\  \\ 2565 =  \frac{50}{2}  \bigg(2a + (50 - 1)d \bigg)  -  \frac{35}{2} \bigg(2a + (35 - 1)d \bigg) \\  \\ 2565 = 25(2a + 49d) - 35(a + 17d)  \\  \\  2565 = 50a + 1225d - 35a - 595d \\  \\ after \: solving \: this \:  \\  \\ a + 42d = 171 \:  ...........(2) \\  \\ from \: eq(1) \: and \: (2) \\  \\eq (1) \times 42 - \: eq (2) \times 9 \\  \\ we \: get \:  \\  \\ a = 3 \: d = 4 \\

Hence required AP is →

3,7,11,15,....,199

Similar questions