is an isosceles triangle ABC with AB = AC the bisector of <B and < C intersect each other at O. join A to O show that :
i) OB=OC (ii)AO bisects <A
Answers
Answered by
0
Answer:
a is boss of alphabet OK
sorry
Answered by
5
Step-by-step explanation:
Solution:-
Given:-
AB = AC and
the bisectors of B and C intersect each other at O
(i) Since ABC is an isosceles with AB = AC,
B = C
½ B = ½ C
⇒ OBC = OCB (Angle bisectors)
∴ OB = OC (Side opposite to the equal angles are equal.)
(ii) In ΔAOB and ΔAOC,
AB = AC (Given in the question)
AO = AO (Common arm)
OB = OC (As Proved Already)
So, ΔAOB ΔAOC by SSS congruence condition.
BAO = CAO (by CPCT)
Thus, AO bisects A.
Similar questions