Math, asked by SheenaV, 1 month ago

is anyone there ple..help me solve this question na ple.. :(((​

Attachments:

Answers

Answered by ripinpeace
14

Step-by-step explanation:

 \large 3 {x}^{2}  + 7x + 2 = 0

→ \large 3 {x}^{2}  + 6x + x + 2 = 0

→ \large 3x(x + 2) + 1(x + 2) = 0

→ \large (3x + 1)(x + 2) = 0

→ \large x =  \frac{ - 1}{3} \:  \:  \:  \:  \:   \:  \:   \:  ,\:  \:  \:  \:  \:  \:  \:  \: x =  - 2

 \large let   \:  \: \alpha  =  \frac{ - 1}{3}  \:  \: and  \:  \:  \beta  =  - 2

 \large a  = 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: b \:  = 7 \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: c  = 2

Now , according to the first relation ,

 \alpha  +  \beta  =   \Large\frac{ - b}{a} (sum of coefficients)

→ \Large  \frac{ - 1}{3}  +  \small( - 2) =   \Large\frac{ - 7}{3}

→ \Large  \frac{ - 1  +  3 \times ( - 2)}{3}   =   \Large\frac{ - 7}{3}

→ \Large  \frac{ - 1  + ( - 6)}{3}   =   \Large\frac{ - 7}{3}

→ \Large  \frac{ - 1  - 6}{3}   =   \Large\frac{ - 7}{3}

→ \Large  \frac{ -7}{3}   =   \Large\frac{ - 7}{3}

Now , according to the second relation ,

 \alpha  \beta  =   \Large\frac{c}{a} (products of coefficients)

→\Large\frac{ - 1}{3}  \small \times ( - 2)  =  \Large  \frac{2}{3}

→\Large\frac{ - 1 \times ( - 2)}{3}  =  \Large  \frac{2}{3}

→\Large\frac{ 2}{3}  =  \Large\frac{2}{3}

Note -

  •  \large( - )( - )  =  +
  •  \large( + )( - )  =  -
  •  \large( - )( + )  =  -
  •  \large( + )( + )  =  +
Similar questions