Is heat transfer from an incandescent bulb due to convection or radiation
Answers
Answer:
Convection
Explanation:
Incandasent bulb has inert atmosphere..... Its not vacuum in it
COMSOL MENU
LOG IN
CONTACT
Menu
COMSOL BLOG
Modeling a Light Bulb, All Forms of Heat Transfer
Fanny Griesmer August 21, 2012
Share this on Facebook Share this on Twitter Share this on LinkedIn
When it gets dark, you flick on the lights. If you were to model this simple example, you would need to take all forms of heat transfer within consideration; convection, conduction, and radiation are all at play when a light bulb is flicked on.
Modeling a Light Bulb
The example used to show how to model heat transfer in a recent webinar involved modeling the natural convection flow with heat in a light bulb. It was a particularly good problem to work through, as modeling a light bulb requires taking all three forms of heat transfer into account, as well as flow.
All Three Forms of Heat Transfer
First, you have conduction, when a 60 W filament is heated thus transferring heat from the heat source to the light bulb. Then there’s convection, which drives a flow inside the bulb transferring the heat from the filament throughout the bulb via the movement of fluids (in this case that’s argon gas). Finally, there is the radiation portion of the problem, and in this case that includes surface-to-surface and surface-to-ambient radiation.
Our Heat Transfer Module includes both of these types of radiation, so that you can account for shading and reflections between radiating surfaces, as well as ambient radiation that may be fixed or given by an arbitrary function. What makes this a multiphysics problem, and not “just” a heat transfer example, is of course the fact that the light bulb involves both heat transfer and fluid flow.
Below is a model of a light bulb where you can see the temperature distribution on the outside of the bulb and the distribution of temperature and pressure inside the bulb:
Model of a light bulb in COMSOL Multiphysics.
Free convection in a light bulb.
This example of natural convection in a light bulb is worked through step-by-step in this archived Heat Transfer webinar. Check it out if you want to learn how to set up and model such a multiphysics problem. Also have a closer look at the Free Convection in a Light Bulb model in our Model Gallery.
It’s a multiphysics world, and our software caters to engineers looking to model real-world applications.