Math, asked by sadsoul40, 11 months ago

Is it possible to design a rectangular park of perimeter 80 metres and area 400m². If so, find its length and breadth.​

Answers

Answered by Anonymous
26

\huge\underline\mathbb {SOLUTION:-}

\mathsf {Let\:length\:of\:park = x\:metres}

\mathsf {We\:have\:given\:area\:of\:rectangular\:park = 400\:m^2}

\therefore \mathsf {Breadth\:of\:park = \frac{400}{x}\:metres}

  • Area of rectangle = L × B

\underline \mathsf {Here,}

  • L = Length
  • B = Breadth

\mathsf {Perimeter\:of\:rectangular\:park = 2(length + breadth) }

\implies \mathsf { 2\bigg(x + \frac{400}{x}\bigg)\:metres}

\mathsf {We\:have\:given\:perimeter\:of\:rectangle = 80\:metres}

\underline \mathsf \red {According\:to\:condition,}

\mathsf {2 \bigg(x + \frac{400}{x}\bigg) = 80}

\implies \mathsf {2\bigg(\frac{x^2 + 400}{x}\bigg) = 80}

\implies \mathsf {2x^2 + 800 = 80x }

\implies \mathsf {2x^2 - 80x + 800 = 0}

\implies \mathsf {x^2 - 40x + 400 = 0}

\underline \mathsf \blue {Comparing\:equation,}

\mathsf {x^2 - 40x + 400 = 0\:with\:general\:quadratic\:equation\:ax^2 + bx + c = 0,}

\underline \mathsf \red {We\:get\::-}

  • a = 1
  • b = - 40
  • c = 400

\mathsf {Discrimination = b^2 - 4ac = (-40)^2 - 4(1)(400) = 1600 = 0}

\mathsf {Discrimination\:is\:equal\:to\:0.}

\therefore Two roots of equation are real and equal which means that it is possible to design a rectangular park of perimeters 80 meters and area 400m².

\mathsf {Using\:quadratic\:formula\:x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\:to\:solve\:equation,}

\mathsf {x = \frac{40 \pm \sqrt{0}}{2} = \frac{40}{2} = 20}

\mathsf {Both,the\:roots\:are\:equal\:to\:2.}

\therefore \mathsf {Length\:of\:rectangular\:parks = 20\:metres}

\mathsf \green {Breadth\:of\:rectangular\:park = \frac{400}{x} = \frac{400}{20} = 20\:metres}

Answered by Anonymous
10

\huge{\underline{\underline{\bf{\blue{Given}}}}}

  • Perimeter of rectangular park = 80m
  • Area of rectangular park = 400m²

\large\underline\bold\green{NoTE}

  • Area of rectangle = length×breadth
  • perimeter of rectangle = 2(l+b)

\huge{\underline{\underline{\bf{\blue{To\:find}}}}}

  • Length and breadth of rectangular park

\huge{\underline{\underline{\bf{\blue{Solution}}}}}

Let the length and breadth be l and b

Now,

According to question

Perimeter of rectangle = 80m

=> 2(l+b) = 80

=> l + b = 80/2

=> l + b = 40

=> l = (40 - b) --------(i)

Area of rectangle = 400m²

=> l × b = 400 -----(ii)

using (i)

=> (40-b) × b = 400

=> 40b - b²- 400 = 0

=> -b² + 40b - 400 = 0

splitting middle term

=> -b² +20b + 20b -400 = 0

=> -b(b-20)+20(b-20)=0

=> (-b+20)(b-20) = 0

Either

b = 20 or b = 20

Substitute the value of breadth in equation (ii)

=> l × b = 400

=> l × 20 = 400

=> l = 400/20 = 20m

\large{\boxed{\red{Required\:length\:=\:20m}}}

\large{\boxed{\red{Required\:breadth\:=\:20m}}}

Similar questions