Math, asked by amannamangulhane, 4 days ago

Is it possible to divide a line segment in the ratio 2√5:3 by geometrical construction? Give reasons.​

Answers

Answered by Syamkumarr
0

Answer:

a line segment can be divide in the ratio 2\sqrt{5 }:3

Step-by-step explanation:

given ratio  2\sqrt{5} : 3

finding out if it is possible to divide a line segment in to the given ratio  

Line segment :

  a straight line with two end points is know as line segment

  in a line segment the length of the line is not changeable so it can be divided into "n" time ( it is possible when n need to be a is a positive number)

  the given ratio  = 2\sqrt{5} : 3  

      \sqrt{ 5}   is will be in between   \sqrt{ 4}   and \sqrt{ 9}

                      ⇒   \sqrt{4 } <\sqrt{5}  <  \sqrt{9}                        

                         2 < \sqrt{ 5} < 3             [initially \sqrt{5} =2.236079  so we will take

     ∴     2\sqrt{5} : 3 = 2(2.2) : 3                               up to 2 decimals  \sqrt{5} =2.2

                      ⇒    4.4:3                    

  by using 4.4 : 3  we can divide a line segment

    so we can divide a line segment in the ratio 2\sqrt{ 5} :3

Similar questions