Math, asked by anmol0092, 1 year ago

is it rational or irrational please proove it
 \frac{6}{3 \sqrt{2} }

Answers

Answered by manitkapoor2
1
 \frac{6}{3 \sqrt{2} } =  \frac{2 * 3}{3 \sqrt{2} } = \frac{ \sqrt{2} * 3\sqrt{2} }{3\sqrt{2}} =  \sqrt{2}
So we are getting  \sqrt{2}
note:
x =  \sqrt{x}  \sqrt{x} , x \ \textgreater \ =0

So now we need to prove  \sqrt{2} is irrational

Note:
Any rational number can be expressed as 
 \frac{x}{y}

where
x and y are in lowest form, (i mean they are co prime)

( by coprime we mean x and y do not have any common factor other than 1)

For example 2 can written as
 \frac{2}{1}

Now Assume 
 \sqrt{2}  is rational,
 i.e. it can be expressed as a rational fraction of the form 
 \frac{x}{y} , where x and y are two relatively prime integers.

Now, since 
 \sqrt{2} =  \frac{x}{y}   ,
 we have 
2 =  \frac{x^2}{y^2} ,
or 
2y^2 = x^2.

Since 
2y^2  is even, 
 x^{2}  must be even,
 and since 
 x^{2}  is even,
 so is 
x .

 Let 
x = 2c.
We have 
4c^2 = 2y^2 
and thus 
y^2 = 2 c^2 .

Since 
 2c^2 is even, 
y^2  is even,
and since y  
 is even, so is x.

 However, two even numbers cannot be co prime,
 so 
 \sqrt{2}   cannot be expressed as a rational fraction;

hence 
 \sqrt{2}   is irrational

 
Similar questions