Geography, asked by pranadeepreddy7041, 8 months ago

Is mantle the thickest layer of earth

Answers

Answered by MEGHAISGREAT
1

Answer:

yes

Explanation:

FOLLOW ME AND MARK ME AS BRAINLIEST AND THANK ME

Answered by ishanisarkar42vc
1

Answer: yes......

The mantle is the mostly-solid bulk of Earth's interior. The mantle lies between Earth's dense, super-heated core and its thin outer layer, the crust. The mantle is about 2,900 kilometers (1,802 miles) thick, and makes up a whopping 84% of Earth's toAs Earth began to take shape about 4.5 billion years ago, iron and nickel quickly separated from other rocks and minerals to form the core of the new planet. The molten material that surrounded the core was the early mantle.  

 

Over millions of years, the mantle cooled. Water trapped inside minerals erupted with lava, a process called “outgassing.” As more water was outgassed, the mantle solidified.

 

The rocks that make up Earth’s mantle are mostly silicates—a wide variety of compounds that share a silicon and oxygen structure. Common silicates found in the mantle include olivine, garnet, and pyroxene. The other major type of rock found in the mantle is magnesium oxide. Other mantle elements include iron, aluminum, calcium, sodium, and potassium.

 

The temperature of the mantle varies greatly, from 1000° Celsius (1832° Fahrenheit) near its boundary with the crust, to 3700° Celsius (6692° Fahrenheit) near its boundary with the core. In the mantle, heat and pressure generally increase with depth. The geothermal gradient is a measurement of this increase. In most places, the geothermal gradient is about 25° Celsius per kilometer of depth (1° Fahrenheit per 70 feet of depth).

 

The viscosity of the mantle also varies greatly. It is mostly solid rock, but less viscous at tectonic plate boundaries and mantle plumes. Mantle rocks there are soft and able to move plastically (over the course of millions of years) at great depth and pressure.

 

The transfer of heat and material in the mantle helps determine the landscape of Earth. Activity in the mantle drives plate tectonics, contributing to volcanoes, seafloor spreading, earthquakes, and orogeny (mountain-building).

 

The mantle is divided into several layers: the upper mantle, the transition zone, the lower mantle, and D” (D double-prime), the strange region where the mantle meets the outer core.

 

Upper Mantle

 

The upper mantle extends from the crust to a depth of about 410 kilometers (255 miles). The upper mantle is mostly solid, but its more malleable regions contribute to tectonic activity.

 

Two parts of the upper mantle are often recognized as distinct regions in Earth’s interior: the lithosphere and the asthenosphere.

 

Lithosphere

The lithosphere is the solid, outer part of the Earth, extending to a depth of about 100 kilometers (62 miles). The lithosphere includes both the crust and the brittle upper portion of the mantle. The lithosphere is both the coolest and the most rigid of Earth’s layers.  

 

The most well-known feature associated with Earth’s lithosphere is tectonic activity. Tectonic activity describes the interaction of the huge slabs of lithosphere called tectonic plates. The lithosphere is divided into 15 major tectonic plates: the North American, Caribbean, South American, Scotia, Antarctic, Eurasian, Arabian, African, Indian, Philippine, Australian, Pacific, Juan de Fuca, Cocos, and Nazca.

 

The division in the lithosphere between the crust and the mantle is called the Mohorovicic discontinuity, or simply the Moho. The Moho does not exist at a uniform depth, because not all regions of Earth are equally balanced in isostatic equilibrium. Isostasy describes the physical, chemical, and mechanical differences that allow the crust to “float” on the sometimes more malleable mantle. The Moho is found at about 8 kilometers (5 miles) beneath the ocean and about 32 kilometers (20 miles) beneath continents.

 

Different types of rocks distinguish lithospheric crust and mantle. Lithospheric crust is characterized by gneiss (continental crust) and gabbro (oceanic crust). Below the Moho, the mantle is characterized by peridotite, a rock mostly made up of the minerals olivine and pyroxene.

 

Asthenosphere

The asthenosphere is the denser, weaker layer beneath the lithospheric mantle. It lies between about 100 kilometers (62 miles) and 410 kilometers (255 miles) beneath Earth’s surface. The temperature and pressure of the asthenosphere are so high that rocks soften and partly melt, becoming semi-molten.

 

The asthenosphere is much more ductile than either the lithosphere or lower mantle. Ductility measures a solid material’s ability to deform or stretch under stress. The asthenosphere is generally more viscous than the lithosphere, and the lithosphere-asthenosphere boundary (LAB) is the point where geologists and rheologists—scientists who study the flow of matter—mark the difference in ductility between the two layers of the upper mantle.tal volume

Similar questions