Math, asked by Apxex, 1 year ago

Is my rectangle right or wrong

Attachments:

RehanAhmadXLX: Use distance Formula
Apxex: I asked about rectangle bro
RehanAhmadXLX: yes

Answers

Answered by RehanAhmadXLX
2
Heya !!!

Here is your answer.

Let us first calculate the distance.

Using distance formula,
PQ =  \sqrt{{(x2 - x1)}^{2}   +  {(y2 - y1) }^{2} }
So,
AB= \sqrt{{(6 - 0 )}^{2}   +  {(7 + 1) }^{2} } \\  =  \sqrt{36 + 64}  \\  =  \sqrt{100}  = 10 \: units
BC =  \sqrt{{( - 2 - 6)}^{2}   +  {(3 - 7) }^{2} }  \\  =  \sqrt{ { (- 8)}^{2}  +  { (- 4)}^{2} }  \\  =  \sqrt{64 + 16}  =  \sqrt{80}  \: units
CD =  \sqrt{{(8  + 2)}^{2}   +  {(3 - 3) }^{2} } \\  =  \sqrt{ {(10)}^{2} }  \\  =  \sqrt{100}  = 10 \: units
DA =  \sqrt{{(0 - 8)}^{2}   +  {( - 1 - 3) }^{2} } \\  =  \sqrt{ { (- 8)}^{2}  +  { (- 4)}^{2} }  \\  =  \sqrt{64 + 16}  =  \sqrt{80}  \: units
Now, Diagonals...
AC =  \sqrt{{( - 2 - 0)}^{2}   +  {(3  + 1) }^{2} }  \\  =  \sqrt{ {( - 2)}^{2} +  {(4)}^{2}  }  \\  =  \sqrt{4 + 16}  =  \sqrt{20}  \: units
BD =  \sqrt{{(8 - 6)}^{2}   +  {(3 -7) }^{2} }\\  =  \sqrt{ {( 2)}^{2} +  {( - 4)}^{2}  }  \\  =  \sqrt{4 + 16}  =  \sqrt{20}  \: units

Now,
Opposite Sides...
AB = CD = 10 units.
BC = DA = √80 units.

And, Diagonals...
AC = BD = √20 units.

Therefore, it is a rectangle.

Hope It Helps

Apxex: thx :)
Similar questions