Science, asked by razmimohammed58, 6 months ago

is not the ill-effects caused by nanotechnology?
1. Limiting the use of nanotechnology.
2. Minimizing the spreading of nanoparticles using nanofilters
3. Acting against production of nano armaments
4. Testing the amount of nanoparticles in air using nanosensors.​

Answers

Answered by tomi22
0

Answer:

sagol ka mahina ghhsgşşjjd fhnfjfgkķ....

Answered by rastogipriya89
0

Answer:

Explanation:

\orange{\bold{\underbrace{\overbrace{❥Question᎓}}}}

❥Question᎓

Integrate the function

\huge\green\tt\frac{ \sqrt{tanx} }{sinxcosx}}

⇛\huge\tt\frac{ \sqrt{tanx} }{sinxcosx}

sinxcosx

tanx

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt \frac{ \sqrt{tanx} }{sinxcosx \times \frac{cosx}{cosx}}

sinxcosx×

cosx

cosx

tanx

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt \frac{ \sqrt{tanx} }{sinx \times \frac{ {cos}^{2} x}{cosx}}

sinx×

cosx

cos

2

x

tanx

ㅤ ㅤ ㅤ

⇛ \huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2} x \times \frac{sinx}{cosx} }

cos

2

cosx

sinx

tanx

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2}x \times tanx }

cos

2

x×tanx

tanx

⇛\huge\tt {tan}^{ \frac{1}{2} - 1 } \times \frac{1}{ {cos}^{2} x}tan

2

1

−1

×

cos

2

x

1

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x⇛(tan)(tan)

2

1

×

cos

2

x

1

=(tanx)

2

1

×sec

2

x⇛(tan)

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = ∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx⇛(tan)(tan)

2

1

×

cos

2

x

1

=∫(tanx)

2

1

×sec

2

x×dx⇛(tan)

ㅤ ㅤ ㅤ ㅤ ㅤ

\bold\blue{☛\: Let tanx=t}☛Lettanx=t

\bold\blue{☛ \:Differentiating \: both \: sides \: w.r.t.x}☛Differentiatingbothsidesw.r.t.x

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt {sec}^{2} x = \frac{dt}{dx}sec

2

x=

dx

dt

⇛\huge\tt{dx \frac{dt}{ {sec}^{2}x }}dx

sec

2

x

dt

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt∴∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx∴∫(tanx)

2

1

×sec

2

x×dx

⇛\huge\tt ∫ {(t)}^{ - \frac{1}{2} } \times {sec}^{2} x \times \frac{dt}{ {sec}^{2}x }∫(t)

2

1

×sec

2

sec

2

x

dt

⇛\huge\tt ∫ {t}^{ - \frac{1}{2} }∫t

2

1

ㅤ ㅤ

⇛ \huge\tt\frac{ {t}^{ - \frac{1}{2} + 1} }{ - \frac{1}{2} + 1 }

2

1

+1

t

2

1

+1

⇛ \huge\tt \frac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } + c = 2 {t}^{ \frac{1}{2} } + c = 2 \sqrt{t}

2

1

t

2

1

+c=2t

2

1

+c=2

t

⇛\huge2 \sqrt{t} + c = 2 \sqrt{tanx}2

t

+c=2

tanx

╚════════════════════════

Similar questions