Physics, asked by siddharthgager30, 6 months ago

is question ke sath answer bhi hai, I just want to know that the formula of Differentiation is
(du/dx)v + (dv/dx)u
is question me dlnx/dx ki sin se multiply kyu nhi hua
please don't scam ​

Attachments:

Answers

Answered by aryan073
6

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

\\ \large\rm{\dfrac{d}{dx}sin(lnx)}

To find :

\\ \large\rm{ Differentiation \: of \: \dfrac{d}{dx}sin(lnx)}

Explanation:

   \bigstar \pink{given} \: \implies \large \sf \: y =  sin(lnx)

  \\ \implies \bf{ \: differentiating \: both \: \: side \: with \: respect \: to \: x}

\\  \implies \large \sf \:  y = sin(lnx)

 \\  \implies \large \sf \:  \frac{dy}{dx}  =  \frac{d}{dx} sin(lnx)

 \:  \:  \:  \:  \: \\ \therefore \bf{by \: using \: chain \: rule}

 \\  \implies \displaystyle \sf \:  \frac{dy}{dx}  =  \frac{d}{dx} sin(lnx) \times  \frac{d}{dx} lnx \:  \times  \frac{d}{dx}  \: x

Values :

 \bullet \bf \large\ \:  \frac{d}{dx} lnx =  \frac{1}{x}

 \bullet \large \bf \:  \frac{d}{dx} x = 1

   \\ \therefore\bf \: put \: the \: values \: in \: given \: expression

  \\ \implies \large \sf \:  \frac{dy}{dx}  =  \frac{d}{dx} sin(lnx)  \times  \frac{d}{dx} lnx \times  \frac{d}{dx} x

 \\  \implies \large \sf \:  \frac{dy}{dx}  = cos(lnx) \times  \frac{1}{x}  \times 1

  \\ \implies \large \sf \:  \frac{dy}{dx}  =  \frac{cos(lnx)}{x}

 \\  \therefore \large \boxed{ \sf{ \frac{dy}{dx}  = sin(lnx) =  \frac{cos(lnx)}{x} }}

hence proved it ⛄

Similar questions