Is secant theta + tan theta equal to p show that p square - 1 / p square + 1 equal to sin theta?
Answers
Answered by
0
Answer:
Step-by-step explanation:
R.H.S:
(p²-1) / (p²+1)
= [(secθ+tanθ)2-1] / [(secθ+tanθ)2+1]
= (sec²θ+tan²θ+2secθtanθ-1) / (sec²θ+tan²θ+2secθtanθ+1)
= (Sec²θ-1)+tan²θ+2secθtanθ / (1+tan²θ)+sec²θ+2secθtanθ
= tan²θ+tan²θ+2secθtanθ / sec²θ+sec²θ+2secθtanθ [sec²θ - 1=tan²θ]
= 2tan²θ+2secθtanθ / 2sec²θ+2secθtanθ
= 2tanθ(tanθ+secθ) / 2secθ(secθ+tanθ)
= tanθ / secθ
= sinθ/cosθ / 1/cosθ [tanθ=sinθ/cosθ and secθ=1/cosθ ]
= sinθ/1
= sinθ
= L.H.S
Hence Proved.
Similar questions