Math, asked by syedabutalhahus6209, 1 year ago

Is secant theta + tan theta equal to p then find out the value of cosecant theta?

Answers

Answered by aakashvoora
0

Answer:

sec theta + tan theta = p

=> (1 + sin theta)/cos theta = p

=>  1 + sin theta = p cos theta

square on both side

=>  1 + sin^2 theta + 2sin theta = p^2 cos^2 theta

=>  1 + sin^2 theta + 2 sin theta = p^2 ( 1 - sin^2 theta )

=>  1 + sin^2 theta + 2 sin theta = p^2 ( 1 - 1/cosec^2 theta )

=>  1 + sin^2 theta + 2 sin theta = p^2 ( cosec^2 theta - 1 )/cosec^2 theta

Multiplying whole equation by cosec^2 theta

=>  cosec^2 theta + 1 + 2 cosec theta = p^2 ( cosec^2 theta - 1)     .........(i)

since: (cosec theta + 1)^2 = cosec^2 theta + 1 + 2 cosec theta ............(ii)

Substituting (ii) in (i)

=>  (cosec theta + 1)^2 = p^2(cosec^2 theta - 1)

=>  (cosec theta + 1)^2/(cosec^2 theta -1) = p^2

=>  (cosec theta + 1)(cosec theta + 1)/(cosec theta + 1)(cosec theta - 1) = p^2

=>  (cosec theta + 1)/(cosec theta - 1) = p^2

=>  cosec theta + 1 = p^2 cosec theta - p^2

=>  p^2 + 1 = p^2 cosec theta - cosec theta

=>  p^2 + 1 = cosec theta ( p^2 - 1 )

=>  (p^2 + 1)/(p^2 - 1) = cosec theta

=>  cosec theta = (p^2 + 1)/(p^2 - 1)

Please mark as brainliest......

Similar questions