Math, asked by smn66, 9 months ago

is sin^-1 4/5 + sin^-1 12/13 + sin^-1 33/65 = π/2​

Answers

Answered by rishu6845
3

Answer:

\bold{Yes \: statement \: is \: true}

Step-by-step explanation:

\bold{To \: verify}\longrightarrow \\  {sin}^{ - 1} ( \frac{4}{5} ) \:  +  {sin}^{ - 1} ( \frac{12}{13} ) +  {sin}^{ - 1} ( \frac{33}{65} ) =  \dfrac{\pi}{2}

\bold{Concept \: used}\longrightarrow \\ 1) {sin}^{ - 1} x +  {sin}^{ - 1} y =  {sin}^{ - 1} (x \sqrt{1 -  {y}^{2}  }  + y \sqrt{1 -  {x}^{2} }  \: )

2) {sin}^{ - 1} x =  {cos}^{ - 1}  \sqrt{1 -  {x}^{2} }

3) {sin}^{ - 1} x +  {cos}^{ - 1} x =  \dfrac{\pi}{2}

\bold{Solution}\longrightarrow \\  {sin}^{ - 1} ( \dfrac{4}{5} ) +  {sin}^{ - 1} ( \dfrac{12}{13} ) +  {sin}^{ - 1} ( \dfrac{33}{65} )

 =  {sin}^{ - 1} ( \:  \dfrac{4}{5}  \sqrt{1 -  {( \dfrac{12}{13} )}^{2} } +  \dfrac{12}{13}   \sqrt{1 -  {( \dfrac{4}{5}) }^{2} } \:  ) +  {cos}^{ - 1}  \sqrt{1 -  {( \dfrac{33}{65}) }^{2} }

 =  {sin}^{ - 1} (  \: \dfrac{4}{5}   \sqrt{1 -  \dfrac{144}{169} }  +  \dfrac{12}{13}  \sqrt{1 -  \dfrac{16}{25} }  \: ) +  {cos}^{ - 1}  \sqrt{1 -  \dfrac{1089}{4225} }

 =  {sin}^{ - 1} ( \:  \dfrac{4}{5}  \:  \dfrac{169  - 144}{169}  \:  +   \dfrac{12}{13}  \: \dfrac{25 - 16}{25} \:  ) +  {cos}^{ - 1}  \sqrt{ \dfrac{4225 - 1089}{4225} }

  = {sin}^{ - 1} ( \:  \dfrac{4}{5}  \:  \dfrac{5}{13}  +  \dfrac{12}{13}  \:  \dfrac{3}{5}  \: ) +  {cos}^{ - 1}  \sqrt{ \dfrac{3136}{4225} }

 =  {sin}^{ - 1} ( \dfrac{20 + 36}{65} ) +  {cos}^{ - 1} ( \dfrac{56}{65} )

 =  {sin}^{ - 1} ( \dfrac{56}{65} ) +  {cos}^{ - 1} ( \dfrac{56}{65} )

 =  \dfrac{\pi}{2}

it \: means \: given \: relation \: is \: true

Similar questions