Math, asked by tushar12328, 1 year ago

is tanα=3tanβ, then prove that tan (α-β)=sin2β/5-cos2β

Answers

Answered by Pitymys
1

We know that  \tan (\alpha -\beta )=\frac{\tan \alpha -\tan \beta}{1+\tan \alpha \tan \beta}    . Given  \tan \alpha =3 \tan \beta  . Now, plugging this equation in the formula,

 \tan (\alpha -\beta )=\frac{3 \tan \beta -\tan \beta}{1+3 \tan \beta \tan \beta}   \\<br />\tan (\alpha -\beta )=\frac{2 \tan \beta }{1+3 \tan ^2\beta }  \\<br />\tan (\alpha -\beta )=\frac{2 \tan \beta \cos^2 \beta }{\cos^2 \beta+3 \tan ^2\beta \cos^2 \beta}  \\<br />\tan (\alpha -\beta )=\frac{2 \sin \beta \cos \beta }{\cos^2 \beta+3  \sin^2 \beta}  \\<br />\tan (\alpha -\beta )=\frac{2 \sin \beta \cos \beta }{1+2  \sin^2 \beta} \\<br />

 \tan (\alpha -\beta )=\frac{ \sin2 \beta  }{2+2  \sin^2 \beta-1} \\<br />\tan (\alpha -\beta )=\frac{ \sin2 \beta  }{2-(1-2  \sin^2 \beta)} \\<br />\tan (\alpha -\beta )=\frac{ \sin2 \beta  }{2-\cos 2\beta} \\

Similar questions