Is the equation in bracket 1 + m square into x square + to MCX + bracket c square minus A square equal to zero has equal roots prove that c square equal to a square in bracket oneplus m square
Answers
Answered by
3
Answer:
(1 + m2)x2 + 2 mcx + c2 - a2 = 0 has equal roots
⇒ b2 - 4ac = 0
⇒ (2 mc)2 - 4(1 + m2)(c2 - a2) = 0
⇒ 4m2c2 - 4(c2 - a2 + m2c2 - m2a2) = 0
⇒ 4m2c2 - 4c2 + 4a2 - 4m2c2 + 4m2a2 = 0
⇒ 4m2a2 - 4c2 + 4a2 = 0
⇒ m2a2 - c2 + a2 = 0
⇒ a2(1 + m2) - c2 = 0
⇒ c2 = a2(1 + m2)
Step-by-step explanation:
Answered by
4
: (1 + m²)x² + 2 mcx + c² - a² = 0 has equal roots
On comparing the given equation with, ax² + bx + c = 0
Here, a = (1 + m²) , b = 2mc , c = c² - a²
Discriminant , D = b² - 4ac
(2 mc)² - 4(1 + m²)(c² - a²) = 0
4m²c² - 4(c² - a² + m²c² - m²a²) = 0
4m²c² - 4c² + 4a² - 4m²c² + 4m²a² = 0
4(m²a² - c² + a² ) = 0
m²a² - c² + a² = 0
a² + m²a² - c² = 0
a²(1 + m²) - c² = 0
HOPE THIS ANSWER WILL HELP YOU...
Similar questions