Math, asked by kingbanti38, 19 days ago

Is the following equation Exact? (3xy-y^{2})dx+x(x-y)dy=0 ​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \left( 3xy -  {y}^{2} \right)dx + x \left(x - y \right)dy = 0 \\

 \implies  x \left(x - y \right)dy = - \left( 3xy -  {y}^{2} \right)dx   \\

 \implies  x \left(x - y \right)dy =  \left(  {y}^{2}  - 3xy\right)dx   \\

 \implies   \dfrac{dy}{dx} =  \dfrac{  {y}^{2}  - 3xy}{ {x}^{2} - xy }   \\

 \bf{Put \:  \:   \: y = vx}

 \bf{ \mapsto\:  \:   \:  \dfrac{dy}{dx} = v  + x \dfrac{dv}{dx}}

So,

 \implies   v  + x\dfrac{dv}{dx} =  \dfrac{  {v}^{2}  {x}^{2}   - 3v {x}^{2} }{ {x}^{2} - v {x}^{2}  }   \\

 \implies v + x  \dfrac{dv}{dx} =  \dfrac{  {v}^{2}     - 3v  }{ 1 - v  }   \\

 \implies  x  \dfrac{dv}{dx} =  \dfrac{  {v}^{2}     - 3v  }{ 1 - v  }  - v  \\

 \implies  x  \dfrac{dv}{dx} =  \dfrac{  {v}^{2}     - 3v  - v +  {v}^{2}  }{ 1 - v  }    \\

 \implies  x  \dfrac{dv}{dx} =  \dfrac{  2{v}^{2}     - 4v   }{ 1 - v  }    \\

 \implies  \dfrac{ 1 - v  }{  2{v}^{2}     - 4v   }  \: dv =    \dfrac{dx}{x}   \\

 \implies  \dfrac{ 1 - v  }{  v(v     - 2)   }  \: dv =  2  \dfrac{dx}{x}   \\

Integrating both sides,

 \displaystyle \implies  \int \dfrac{ 1 - v  }{  v(v     - 2)   }  \: dv =  2  \int \dfrac{dx}{x}   \\

 \displaystyle \implies  -  \int \dfrac{  v - 1  }{  v(v     - 2)   }  \: dv =  2  \int \dfrac{dx}{x}   \\

 \displaystyle \implies  -   \dfrac{1}{2} \int \dfrac{  2v -2  }{  v(v     - 2)   }  \: dv =  2  \int \dfrac{dx}{x}   \\

 \displaystyle \implies  -   \dfrac{1}{2} \int \dfrac{  v + v -2  }{  v(v     - 2)   }  \: dv =  2  \int \dfrac{dx}{x}   \\

 \displaystyle \implies  -   \dfrac{1}{2} \int \dfrac{  dv }{  v     - 2   }     -   \dfrac{1}{2} \int \dfrac{  dv }{  v      }=  2  \int \dfrac{dx}{x}   \\

 \displaystyle \implies  -   \dfrac{1}{2}  \ln |  v     - 2  |       -   \dfrac{1}{2} \ln | v   |  =  2 \ln |x| +  \ln |c|     \\

 \displaystyle \implies  -   \dfrac{1}{2}  \ln | v( v     - 2)  |  =  2 \ln |x| +  \ln |c|     \\

 \displaystyle \implies    \ln | v( v     - 2)  |  =  4 \ln |x| +  2\ln |c|     \\

 \displaystyle \implies    \ln  \left|  \dfrac{y}{x}  \left( \dfrac{y}{x}     - 2 \right)   \right|  =  4 \ln |x| +  \ln |c^{2} |     \\

 \displaystyle \implies    \ln  \left|  \dfrac{y}{x}  \left( \dfrac{y - 2x}{x}     \right)   \right|  =  4 \ln |x| +  \ln |c^{2} |     \\

 \displaystyle \implies    \ln  \left|   \dfrac{y(y - 2x)}{{x}^{2} }     \right|  =  4 \ln |x| +  \ln |c^{2} |     \\

 \displaystyle \implies    \ln  \left|  y(y - 2x)    \right|   - 2 \ln |x| =  4 \ln |x| +  \ln |c^{2} |     \\

 \displaystyle \implies    \ln  \left|  y(y - 2x)    \right|  =  6 \ln |x| +  \ln |c^{2} |     \\

Put c² = C,

 \displaystyle \implies    \ln  \left|  y(y - 2x)    \right|  =  6 \ln |x| +  \ln | </p><p>C|     \\

 \displaystyle \implies    \ln  \left|  y(y - 2x)    \right|  =   \ln |C {x}^{6} |      \\

 \displaystyle \implies     y(y - 2x)     =   C {x}^{6}       \\

Similar questions