Math, asked by pavanichowdhary, 11 months ago

is the roots of 32 x cube minus 48 x square + 22 x minus 3 equal to zero are in AP then the middle root is​

Answers

Answered by MaheswariS
0

\textbf{Given:}

32\,x^3-48\,x^2+22\,x-3=0

\text{To find:}

\text{The middle root of the given equation}

\textbf{Solution:}

\text{Since the roots of $32\,x^3-48\,x^2+22\,x-3=0$ are in A.P,}

\text{let the roots be a-d, a, a+d}

\textbf{Sum of the roots=$\bf\dfrac{48}{32}$}

\implies\,(a-d)+a+(a+d)=\dfrac{3}{2}

\implies\,3a=\dfrac{3}{2}

\implies\,a=\dfrac{1}{2}

\textbf{Product of the roots=$\bf\dfrac{3}{32}$}

\implies\,(a-d)a(a+d)=\dfrac{3}{32}

\implies\,a(a^2-d^2)=\dfrac{3}{32}

\implies\,\dfrac{1}{2}(\dfrac{1}{4}-d^2)=\dfrac{3}{32}

\implies\,\dfrac{1}{4}-d^2=\dfrac{3}{16}

\implies\,\dfrac{1}{4}-\dfrac{3}{16}=d^2

\implies\,d^2=\dfrac{1}{16}

\implies\,d=\pm\dfrac{1}{4}

\therefore\textbf{The required roots are $\dfrac{1}{4},\dfrac{1}{2},\dfrac{3}{4}$ or $\dfrac{3}{4},\dfrac{1}{2},\dfrac{1}{4}$}

\implies\textbf{The middle root is $\dfrac{1}{2}$}

Find more:

If alpha,beta are the roots of equation x^2-5x+6=0 and alpha > beta then the equation with the roots (alpha+beta)and (alpha-beta) is

https://brainly.in/question/5731128

The equation whose roots are smaller by 1 than those of 2x2 – 5x + 6 = 0 is 

a) 2x^2– 9x + 13 = 0

b) 2x^2– x + 3 = 0 

c) 2x^2+ 9x + 13 = 0

d) 2x^2 + x + 3 = 0​

https://brainly.in/question/16821146

Similar questions