Math, asked by Saqibsouran2601, 9 hours ago

Is the statement sin(a+11°)=cos(79°-a), 0°

Answers

Answered by manissaha129
1

Answer:

We know that, sin∅=cos(90°-∅)

 LHS = \sin(a + 11°)   \\ =  \cos(90° - (a + 11°))  \\  =  \cos(90° - a - 11°)   \\ = \cos(79° - a)  = RHS

  • So, the statement is true.
Answered by amitnrw
1

Given :  Statement

sin(a+11°)=cos(79°-a)

To Find : Is statement True  ?

Solution:

sin(a+11°)=cos(79°-a)

LHS

= sin(a+11°)

Sin(α) = cos(90° - α)

α = a+11

= cos (90° -(a + 11°))

= cos (79° - a)

= RHS

Hence LHS = RHS

So given statement is TRUE

sin(a+11°)=cos(79°-a)

Learn More

Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ

brainly.in/question/10480120

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

brainly.in/question/2769339

Similar questions