Math, asked by MalavDoshi, 1 year ago

is there any relationship between sides and angles of triangles other than right angle triangle i.e. in acute and obtuse angle triangles?? ​

Answers

Answered by lakshaymadaan18
2

Triangles can also be classified according to their internal angles, measured here in degrees.

A right triangle (or right-angled triangle, formerly called a rectangled triangle) has one of its interior angles measuring 90° (a right angle). The side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti (singular: cathetus) of the triangle. Right triangles obey the Pythagorean theorem: the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse: a2 + b2 = c2, where a and b are the lengths of the legs and c is the length of the hypotenuse. Special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 + 42 = 52. In this situation, 3, 4, and 5 are a Pythagorean triple. The other one is an isosceles triangle that has 2 angles that each measure 45 degrees.

Triangles that do not have an angle measuring 90° are called oblique triangles.

A triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, where a and b are the lengths of the other sides.

A triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, where a and b are the lengths of the other sides.

A triangle with an interior angle of 180° (and collinear vertices) is degenerate.

A right degenerate triangle has collinear vertices, two of which are coincident.

A triangle that has two angles with the same measure also has two sides with the same length, and therefore it is an isosceles triangle. It follows that in a triangle where all angles have the same measure, all three sides have the same length, and such a triangle is therefore equilateral.

Answered by Anonymous
1

formula

if the angle between two sides a and b is theta

then area

 \frac{a \times b \:  \sin(theta) }{2}

Similar questions