Math, asked by VishnuDhasan, 1 year ago

is x-√5 is a factor of x^3-3√5x^2-5x+15√5

Answers

Answered by vaishnavi5069
3
(√5)^3-3√5(√5)^2-5(√5)+15√5
5√5-15√5-5√5+15√5
=0
Yes x-√5 is a factor ofx^3-3√5x^2-5x+15√5
Answered by SmallMiniDoraemon
1

SOLUTION :


Let P(x) = \bf x^{3}-3\sqrt{5}x^{2}-5x+15\sqrt{5}

and

g(x) = \bf x-\sqrt{5}


\bf x=\sqrt{5}


now,

\bf P(\sqrt{5} ) = (\sqrt{5})^{3}-3\sqrt{5}(\sqrt{5})^{2}-5(\sqrt{5})+15\sqrt{5}


          \bf = 5\sqrt{5}-3\times 5\sqrt{5}-5\sqrt{5}+15\sqrt{5}


          \bf = \cancel{ 5\sqrt{5} } -15\sqrt{5} \cancel{ -5\sqrt{5} } +15\sqrt{5}


         \bf = \cancel{-15\sqrt{5}} \cancel{ +15\sqrt{5}}


          \bf =0


Hence,

g(x) is the factor of P(x)

Similar questions