Math, asked by tomarvst494, 9 months ago

इस द डिस्टेंस बिटवीन द पॉइंट (4,p) and (1,0) is 5 then p =​

Answers

Answered by ItzAditt007
0

\rule{400}4

Correct Que:-

= If the distance between the points (4,p) and (1,0) is 5 units then find the value of p.

\rule{400}4

ANSWER:-

▪︎ Given:-

  • Two points (4,p) and (1,0)

  • The distance between the point = 5 units.

▪︎ To Find:-

  • The value of p.

\rule{400}2

▪︎ Formula Used:-

• Distance Formula:-

\tt\leadsto Distance = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Where,

  • \sf x_1 \:\:And \:\:x_2 are x coordinates of given two points.

  • \sf y_1 \:\: And \:\:y_2 are y coordinates of the given two points.

\rule{400}2

▪︎ So Here,

  • \sf x_1\:\:And\:\:x_2 are 4 and 1 respectively.

  • \sf y_1 \:\:And\:\:y_2 are p and 0 respectively.

\rule{400}2

▪︎ Therefore ATQ:-

\tt\mapsto \: distance =  \sqrt{(1 - 4) {}^{2}  + (0 - p) {}^{2} }  = 5. \\  \\ \tt\mapsto \sqrt{( - 3) {}^{2} + ( - p) {}^{2}  }  = 5 \\  \\ \tt \mapsto \sqrt{9 +p {}^{2}  }  = 5 \\  \\ \tt\mapsto( \sqrt{9 + p {}^{2} } ) {}^{2}  =  {5}^{2}  \\  \\ \sf(squaring \: both \: sides) \\  \\ \tt\mapsto9 + p {}^{2}  = 25 \\  \\ \tt\mapsto \: p^2 = 25 - 9 \\  \\ \tt\mapsto \: p {}^{2}  = 16 \\  \\ \tt\mapsto \: p =  \sqrt{16}  \\  \\ \tt\mapsto \: p = 4.

\rule{400}4

\therefore The required value of p is 4.

\rule{400}4

Similar questions