Math, asked by heathersabra, 10 months ago

Isaac paid $2.75 for 4 granola bars and 1 apple. Amelia paid $2.25 for 2 granola bars and 3 apples. Find the cost of a granola bar and an apple.

Answers

Answered by TRISHNADEVI
6

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: QUESTION \:  \: } \mid}}}}}

 \:  \:  \:  \:  \text{Isaac paid  \$2.75 for 4 granola bars and} \\  \text{ 1 apple. Amelia paid  \$2.25 for 2 granola } \\  \text{bars and 3 apples. Find the cost of a } \\  \text{granola bar and an apple.}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

\underline{\mathfrak{ \:  \: Given, \:  \: }} \\  \\  \pink{ \text{Amount paid for 4 granola bars and} } \\  \:  \:  \:  \:   \pink{\text{1 apple = \$ 2.75}} \\  \\  \pink{ \text{Amount paid for 2 granola bars and }} \\  \:  \:  \:  \:   \pink{\text{3 apple = \$ 2.22}} \\  \\  \\  \underline{ \mathfrak{ \:  \: To \:  \:  find : \mapsto  \: }} \\  \\ \:  \:  \:  \:    \green{\text{Cost of a granola bar = ?} } \\  \:  \:  \:  \:   \green{\text{Cost of an apple = ?}} \\  \\  \\  \underline{ \mathfrak{ \:  \: Suppose, \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \red{\text{Cost of a granola bar = \$ x }} \\  \tt{And,} \\   \:  \:  \:  \:  \: \red{ \text{ Cost of an apple = \$ y}}

 \underline{\text{ According to first condition \: }} \\  \\   \pink{\text{Amount paid for 4 granola bars and }} \\   \:  \:  \:  \:  \:  \pink{\text{1 apple = \$ 2.75}} \\  \\  \tt{  : \leadsto :  \:  \: 4x + y = 2.75 \:  \:  -  -  -   - -  > (1)} \\  \\  \underline{ \text{ \: According to second condition \: }} \\  \\  \pink {\text{Amount paid for 2 granola bars and}} \\   \:  \:  \:  \: \pink{ \text{ 3 apple = \$ 2.22} }\\  \\  \tt{ :  \leadsto :  \: 2x + 3y = 2.22 \:  \:  -  -  -  --  > (2)}

 \mathfrak{Now,} \\  \\  \tt {(2) \times 2 \implies \: 2 \times 2x + 2 \times 3y = 2 \times 2.22 }\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt {\implies \: 4x + 6y = 4.44 \:  \:  -  -  -  -  -  > (3)} \\  \\  \tt{ \therefore \:(3) - (1) \implies \: 5y = 1.69 } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ \implies \: y =  \frac{1.69}{5} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \therefore \:  \: y = 0.338 \: }

 \underline{ \text{ \:  \: Putting  the  value  of   \:  \red{y}  \: in eq. (1) , we get  \:  \: }} \\  \\  \tt{(1) \implies \:4x + y = 2.75 } \\  \\   \:  \:  \:  \:  \:  \:  \: \tt{ \implies \: 4x + 0.338 = 2.75} \\  \\\:  \:  \:  \:  \:  \:  \:  \tt{ \implies \: 4x = 2.75 - 0.338} \\  \\\:  \:  \:  \:  \:  \:  \: \tt{ \implies \:4x = 2.412 }\\  \\ \:  \:  \:  \:  \:  \:  \:\tt{ \implies \:x =  \frac{2.412}{4}}  \\  \\ \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\tt{ \therefore \: \: x = 0.603}

 \therefore \: \red{\text{Cost of a granola bar = \$ 0.603 }} \\  \tt{And,} \\   \:  \:  \:  \:  \: \red{ \text{ Cost of an apple = \$ 0.338}}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: VERIFICATION \:  \: } \mid}}}}}

 \underline{ \mathfrak{ \:  \: We \:  \:  have,  \:  \: }} \\  \\  \red{ \text{Cost of a granola bar = \$ 0.603}} \\  \\  \red{\text{Cost of an apple = \$ 0.338}}

In case of Issac,

 \tt{Cost \:  \:  of  \:  \: 4  \:  \: granola \:  \:  bars = \$ (0.603 \times 4)}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{= \$ 2.412} \\  \\  \tt{Cost  \:  \: of  \:  \: 1 \:  \:  apple = \$ (0.338 \times 1) } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{= \$ 0.338} \\  \\   \therefore \:  \: \text{Total amount paid = \$ (2.412 + 0.338) } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \text{= \$ 2.75}

In case of Amelia,

 \tt{Cost  \:  \: of \:  \:  2  \:  \: granola  \:  \: bars = \$ (0.603 \times 2) } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{= \$ 1.206} \\  \\  \tt{Cost \:  \:  of \:   \: 3 \:  \:  apples = \$ (0.338 \times 3) } \\  \\\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \tt{= \$ 1.014} \\  \\  \therefore \:  \:  \text{Total amount paid = \$ (2.412 + 0.338)} \\  \\\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{ = \$ 2.22}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \underline{ \:  \: Hence, Verified. \:  \: }}

Answered by Pricilla
3

 \huge{ \underline{ \overline{ \mid{ \mathbb{ \red{ \:   \: SOLUTION \:  \: } \mid}}}}}

\underline{\bold{ \:  \: Given, \:  \: }} \\  \\  \text{Amount paid for 4 granola bars and}  \\  \:  \:  \:  \:   \text{1 apple = \$ 2.75}\\  \\   \text{Amount paid for 2 granola bars and } \\  \:  \:  \:  \:   \text{3 apple = \$ 2.22} \\  \\  \\  \underline{ \bold{ \:  \: To \:  \:  find : \to  \: }} \\  \\ \:  \:  \:  \:    \text{Cost of a granola bar = ?} \\  \:  \:  \:  \:   \text{Cost of an apple = ?}\\  \\  \\  \underline{ \bold{ \:  \: Suppose, \:  \: }} \\  \\   \:  \:  \:  \:  \:  \:  \text{Cost of a granola bar = \$ x } \\  \bf{And,} \\   \:  \:  \:  \:  \:  \text{ Cost of an apple = \$ y}

 \underline{\text{ According to first condition \: }} \\  \\   \text{Amount paid for 4 granola bars and } \\   \:  \:  \:  \:  \:  \text{1 apple = \$ 2.75} \\  \\  \bf{  : \to :  \:  \: 4x + y = 2.75 \:  \:  -  -  -   - -  > (1)} \\  \\  \underline{ \text{ \: According to second condition \: }} \\  \\  \text{Amount paid for 2 granola bars and} \\   \:  \:  \:  \: \text{ 3 apple = \$ 2.22} \\  \\  \bf{ :  \to :  \: 2x + 3y = 2.22 \:  \:  -  -  -  --  > (2)}

 \mathfrak{Now,} \\  \\  \bf{(2) \times 2 \implies \: 2 \times 2x + 2 \times 3y = 2 \times 2.22 }\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf {\implies \: 4x + 6y = 4.44 \:  \:  -  -  -  -  -  > (3)} \\  \\  \bf{ \therefore \:(3) - (1) \implies \: 5y = 1.69 } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf{ \implies \: y =  \frac{1.69}{5} } \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf{ \therefore \:  \red{ y = 0.338 \: }}

 \underline{ \text{ \:  \: Substituting  the  value  of   \:  \red{y}  \: in eq. (1) , we get  \:  \: }} \\  \\  \bf{(1) \implies \:4x + y = 2.75 } \\  \\   \:  \:  \:  \:  \:  \:  \: \bf{ \implies \: 4x + 0.338 = 2.75} \\  \\\:  \:  \:  \:  \:  \:  \:  \bf{ \implies \: 4x = 2.75 - 0.338} \\  \\\:  \:  \:  \:  \:  \:  \: \bf{ \implies \:4x = 2.412 }\\  \\ \:  \:  \:  \:  \:  \:  \:\bf{ \implies \:x =  \frac{2.412}{4}}  \\  \\ \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:\bf{ \therefore \: \red{ x = 0.603}}

 \therefore \: \text{Cost of a granola bar = \$ 0.603 } \\  \sf{And,} \\   \:  \:  \:  \:  \: \text{ Cost of an apple = \$ 0.338}

Similar questions