Math, asked by himanshu770718, 3 months ago

iska answer bata do bhai jaldi se​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{ \sec( \theta)  -  \tan(\theta) + 1 }{ \sec(\theta) +  \tan(\theta)  + 1 }  \\

 =  \frac{ \sec( \theta)  -  \tan(\theta) +  \sec^{2} ( \theta) -  \tan^{2} ( \theta)  }{ \sec(\theta) +  \tan(\theta)  + 1 }  \\

 =  \frac{ \sec( \theta)  -  \tan(\theta) + ( \sec ( \theta) -  \tan( \theta) )(  \sec( \theta) +  \tan( \theta)  ) }{ \sec(\theta) +  \tan(\theta)  + 1 }  \\

 =  \frac{ (\sec( \theta)  -  \tan(\theta) ) ( \sec( \theta) +  \tan( \theta)  + 1 ) }{ \sec(\theta) +  \tan(\theta)  + 1 }  \\

 =  \sec( \theta)   -   \tan( \theta)

 =  \frac{1 -  \sin( \theta) }{ \cos( \theta) }  \\

Similar questions