Math, asked by patragayatri098, 9 months ago

isosceles traingle

find the value of x​

Attachments:

Answers

Answered by Anonymous
4

Answer:

x + x + 100 = 180 =  > 2x = 180 - 100 =  > 2x = 80 =  > x = 40

✨ follow me ✨

 &lt;!DOCTYPE html&gt;</p><p></p><p>&lt;html&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;title&gt;Sabkabaap&lt;/title&gt;</p><p></p><p>&lt;style&gt;body {</p><p></p><p>margin:0;</p><p></p><p>padding:0px;</p><p></p><p>background:#02101b;</p><p></p><p>text-align:center ;</p><p></p><p>min-height:100vh;</p><p></p><p>font-weight:bold;</p><p></p><p>font-size:20px;</p><p></p><p>font-family:arial;</p><p></p><p>color:white;</p><p></p><p>}</p><p></p><p>a:before{</p><p></p><p>content:"";</p><p></p><p>position:absolute ;</p><p></p><p>top:0;</p><p></p><p>height:100%;</p><p></p><p>width:40%;</p><p></p><p>background:rgb(255,255,255,.05);</p><p></p><p>transform:skewX(5deg);</p><p></p><p>animation:all 1s linear infinite ;</p><p></p><p>}</p><p></p><p>@keyframes all{</p><p></p><p>0%{</p><p></p><p>position:absolute ;</p><p></p><p>left:0;</p><p></p><p>background:rgb(255,255,255,.05);</p><p></p><p>}</p><p></p><p>50%{</p><p></p><p>left:85px;</p><p></p><p>position:absolute ;</p><p></p><p>background:rgb(255,255,255,.05);</p><p></p><p>}</p><p></p><p>100%{</p><p></p><p>right:85px;</p><p></p><p>position:absolute ;</p><p></p><p>background:rgb(255,255,255,.02);</p><p></p><p>}</p><p></p><p>}</p><p></p><p>a{</p><p></p><p>padding:15px 30px;</p><p></p><p>position:relative ;</p><p></p><p>top:200px;</p><p></p><p>color:#f35621;</p><p></p><p>letter-spacing:2px;</p><p></p><p>text-transform:uppercase ;</p><p></p><p>text-decoration:none;</p><p></p><p>transition:0.5s;</p><p></p><p>height:20px;</p><p></p><p>}</p><p></p><p>a svg ,</p><p></p><p>a svg rect {</p><p></p><p>position:absolute ;</p><p></p><p>top:0;</p><p></p><p>left:0;</p><p></p><p>fill:transparent ;</p><p></p><p>width:100%;</p><p></p><p>height:100%;</p><p></p><p>}</p><p></p><p>a svg rect{</p><p></p><p>stroke-width:2;</p><p></p><p>stroke:#f35612;</p><p></p><p>stroke-dasharray:100;</p><p></p><p>animation:ani 2s linear infinite ;</p><p></p><p>}</p><p></p><p>@keyframes ani{</p><p></p><p>0%{</p><p></p><p>stroke-dashoffset:400;</p><p></p><p>}</p><p></p><p>100%{</p><p></p><p>stroke-dashoffset:0;</p><p></p><p>}</p><p></p><p>}</p><p></p><p>footer{</p><p></p><p>position:absolute ;</p><p></p><p>bottom:0px;</p><p></p><p>width:100%;</p><p></p><p>box-sizing:border-box;</p><p></p><p>background:rgb(255,255,255,.2);</p><p></p><p>padding:5px;</p><p></p><p>height:50px;</p><p></p><p>}</p><p></p><p>.i{</p><p></p><p>height:40px;</p><p></p><p>width:40px;</p><p></p><p>border-radius:50%;</p><p></p><p>border:2px solid white;</p><p></p><p>float:left;</p><p></p><p>position:relative ;</p><p></p><p>left:3px;</p><p></p><p>}</p><p></p><p>.name{</p><p></p><p>font-size:20px;</p><p></p><p>font-weight:300;</p><p></p><p>position:relative ;</p><p></p><p>top:10.5px;</p><p></p><p>left:-10px;</p><p></p><p>}</p><p></p><p>.h{</p><p></p><p>float:right ;</p><p></p><p>margin:10px;</p><p></p><p>color:#f35621;</p><p></p><p>position:relative ;</p><p></p><p>top:3px;</p><p></p><p>animation:hi 1s infinite ;</p><p></p><p>}</p><p></p><p>@keyframes hi{</p><p></p><p>0%{</p><p></p><p>transform:scale(0.8);</p><p></p><p>}</p><p></p><p>50%{</p><p></p><p>transform:scale(1);</p><p></p><p>}</p><p></p><p>100%{</p><p></p><p>transform:scale(0.8);</p><p></p><p>}</p><p></p><p>}&lt;/style&gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;a href="#"&gt;</p><p></p><p>&lt;svg &gt;&lt;rect&gt;&lt;/rect&gt;&lt;/svg&gt;</p><p></p><p>❣️Vishal morya❣️</p><p></p><p>&lt;/a&gt;</p><p></p><p>&lt;footer&gt;</p><p></p><p>&lt;/footer&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;

Answered by Brâiñlynêha
38

Given :-

  • One angle of the triangle is 100°
  • And the triangle is an isosceles triangle

To find :-

  • The other two angles of triangle

Solution :-

By the properties of isosceles triangle

  • They have two equal sides
  • And the angles opposite to equal sides of a triangle are also equal

Name the triangle ABC

In ∆ ABC

\sf :\implies \angle ABC = \angle ACB= x

[ angle opposite two equal sides are equal ]

\underline{\bigstar{\sf\ Sum \ of \ angles \ of \triangle = 180^{\circ}}}

Now we have 3 angles x ,x and 100°

\dashrightarrow\sf x+x+100^{\circ}=180^{\circ}\\ \\ \dashrightarrow\sf 2x= 180^{\circ}-100^{\circ}\\ \\ \dashrightarrow\sf x= \cancel{\dfrac{80^{\circ}}{2}}\\ \\ \dashrightarrow\sf x= 40^{\circ}

\boxed{\sf\ Other \ two \ angles \ = 40^{\circ} \ and \ 40^{\circ}}

Attachments:
Similar questions