Physics, asked by jayeshrana55555, 5 months ago

it calculated form as well as value of G​

Answers

Answered by shamanthmp96
1

Explanation:

it calculated form as well as value of G.........

.....

Answered by ketanstekade2004
0

Explanation:

We're all here because we have a problem with G – and I mean, boy, do we have a problem with G," said Carl Williams, Chief of PML's Quantum Measurement Division, to the assembled group on the first morning of the meeting. "This has become one of the serious issues that physics needs to address."

The gravitational constant is familiarly known as "big G" to distinguish it from "little g," the acceleration due to the Earth's gravity.ii Despite its name, big G is tiny – about 6.67 x 10-11 m3 kg-1 s-2 – and comparatively feeble, roughly a trillion trillion trillion times weaker than the electromagnetic force responsible for affixing souvenir magnets to refrigerators. And its weakness makes it difficult to measure.

Experimentalists have used a variety of approaches – swinging pendulums, masses in freefall, balance beams, and torsion balances that measure the torque or rotation of wires supporting masses that are attracted to other masses. But a plot of all the results from the past 15 years reveals a relatively wide spread in values ranging from about 6.67 x 10-11 m3 kg-1 s-2.

Furthermore, CODATA – the International Council for Science Committee on Data for Science and Technology, which analyzes the results of individual experiments and provides an internationally accepted sets of values for fundamental physical constants – has had to increase the uncertainty on its latest recommendation for a value of G due to the divergence of the experiments.

Hope it is helpful to you!!!

Similar questions