English, asked by hello9897, 10 months ago

It can take 12 hours to fill a swimming pool using two pipes. If the pipe of
larger diameter is used for four hours and the pipe of smaller diameter for
9 hours, only half of the pool can be filled. How long would it take for each
pipe to fill the pool separately?​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
116

\huge\sf\pink{Answer}

☞ Smaller pipe takes 30 hours

☞ Larger pipe takes 20 hours

\rule{110}1

\huge\sf\blue{Given}

✭ It takes 12 hours to fill a swimming pool using 2 pipes

✭ The pipe of larger diameter is used for 4 hours and the pipe of smaller diameter is used for 9 hours, only half the pool gets filled

\rule{110}1

\huge\sf\gray{To \:Find}

◈ Time taken by each pipe to fill the pool seperately?

\rule{110}1

\huge\sf\purple{Steps}

Let the time taken by the pipe with larger diameter as a hours, and the let the time taken by the smaller one be b hours

Two pipes fill the full pipe in 12 hours,so then in one hour it will be filling \sf\dfrac{1}{12} \ part

Case 1

\sf\dfrac{1}{a} + \dfrac{1}{b} = \dfrac{1}{12} \quad -eq(1)

\sf \dfrac{b+a}{ab} = \dfrac{1}{12}

\sf ab=12(b+a)

\sf ab=12b+12a\quad-eq(2)

Case 2

\sf\dfrac{4}{a} + \dfrac{9}{b} = \dfrac{1}{2}

\sf\dfrac{4b+9a}{ab} = \dfrac{1}{2}

\sf ab = 2(4b+9a)

\sf ab = 8b+18\quad-eq(3)

\bullet\:\underline{\textsf{As Per the Question}}

\sf 12b+12a=8b+18a

\sf 12b-8b=18a-12a

\sf 4b=6a

\sf b=\dfrac{6a}{4}

\sf\green{b=\dfrac{3a}{2}}\quad-eq(4)

Substituting the value of b in eq(1)

»» \sf\dfrac{1}{a} + \dfrac{1}{\dfrac{3a}{2}}=\dfrac{1}{12}

»» \sf\dfrac{1}{a} + \dfrac{2}{3a} = \dfrac{1}{12}

»» \sf\dfrac{3+2}{3a} = \dfrac{1}{12}

»» \sf \dfrac{5}{3a} = \dfrac{1}{12}

»» \sf 3a=5\times 12

»» \sf a=\dfrac{60}{3}

»» \sf\orange{a=20 \ hours}

Substituting the value of a in eq(4)

\sf b = \dfrac{3\times 20}{2}

\sf b = \dfrac{60}{2}

\sf\orange{b=30 \ hours}

\rule{170}3

Similar questions