CBSE BOARD X, asked by rasiyajaleel86, 10 months ago

It can take 12 hours to fill a swimming pool using two pipes if the pipe with larger diameter is used for 4 hours and pipe of smaller diameter for 9 hours only half the pool can be filled .how long would it take for each pipe fill the pool separately?

( At least please answer the equation thus formed)

Answers

Answered by StarrySoul
21

Solution :

Let P and Q be two pipes

• Water filled by Pipe P in in 1 hour = \sf \: \dfrac{1}{P}

• Water filled by Pipe Q in in 1 hour = \sf \: \dfrac{1}{Q}

Total Quantity of Water filled by both the pipes :

 \implies \sf \:  \dfrac{1}{P }  +  \dfrac{1}{ Q}

Given It can take 12 hours to fill the swimming pool Using both the pipes i.e.

 \implies \sf \:  \dfrac{1}{P }  +  \dfrac{1}{ Q}  =  \dfrac{1}{12} ....(i)

Quantity of Water filled in 4 hours by Pipe P = \sf \: \dfrac{4}{P}

Quantity of Water filled in 9 hours by Pipe Q = \sf \: \dfrac{9}{Q}

We Have,

 \implies \sf \:  \dfrac{4}{P }  +  \dfrac{9}{Q}  =  \dfrac{1}{2} ....(ii)

 \star \: \sf \: Let  \:  \dfrac{1}{P} \: be \:  x  \: and \:   \dfrac{1}{Q}  \:  be \:  y

Rewriting the equation i) and ii)

 \implies \sf \:  x + y =  \dfrac{1}{12} ....(iii)

 \implies \sf \:  4x + 9y =  \dfrac{1}{2}.... iv)

Multiply equation iii) by 4

  \longrightarrow \sf \:  4(x + y) = 4( \dfrac{1}{12} )....(iii)

  \longrightarrow \sf \:  4x +4 y =   \cancel\dfrac{4}{12}

  \longrightarrow \sf \:  4x +4 y =   \dfrac{1}{3}

Subtracting from Equation iii),Thus we have :

 \sf \longrightarrow( 4x + 4y =  \dfrac{1}{3} ) - (4x + 9y =  \dfrac{1}{2} )

 \sf \longrightarrow4x  - 4x  + 9y - 4y =    \dfrac{1}{2}  -  \dfrac{1}{3}

 \longrightarrow \sf \: 5y =  \dfrac{1}{2}  -  \dfrac{1}{3}

 \longrightarrow \sf \: 5y =   \dfrac{3 - 2}{6}

 \longrightarrow \sf \: 5y =   \dfrac{1}{6}

 \longrightarrow \sf \: y =  \dfrac{1}{ 30}

 \longrightarrow \sf \:  \dfrac{1}{Q} \: =  \dfrac{1}{ 30}

 \longrightarrow  \boxed{\purple{\tt \:  Q \: =   \: 30}}

Pipe Q alone can fill the tank in 30 hours.

Putting the value of y = 1/30 in equation iii)

 \longrightarrow\sf \:  x +  \dfrac{1}{30}  =  \dfrac{1}{12}

 \longrightarrow\sf \:  x  =  \dfrac{1}{12}   -  \dfrac{1}{30}

 \longrightarrow\sf \:  x  =   \dfrac{5 - 2}{60}

 \longrightarrow\sf \:  x  =    \cancel\dfrac{ 3}{60}

 \longrightarrow\sf \:  x  =   \dfrac{ 1}{20}

 \longrightarrow \sf \:  \dfrac{1}{P} \: =  \dfrac{1}{ 20}

 \longrightarrow  \boxed{\purple{\tt \: P  \: =   \: 20}}

Pipe P alone can fill the tank in 20 hours.

Similar questions