it is given that anglexyz=64° and xy is produced to point p draw a figure from the given information. If ray yq bisects anglezyp,Find anglexyq and reflex angleqyp
Answers
Answer:
Let XY be a Line forming 180°
∠XYZ + ∠ZYP = 180°(Linear pair)
Or, 64° + ∠ZYP = 180°
Or, ∠ZYP = 180° - 64° = 116°
Since, YQ bisects ∠ZYP
So, ∠ZYQ = ∠PYQ = ½ ∠ZYP = 116°/2 = 58°
So, ∠XYQ = ∠XYZ + ∠ZYQ = 64°+ 58° = 122°
Now, reflex ∠QYP = 360° - 58° = 302°
Question :-
It is given that ∠XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.
Answer :-
i.e : XYP is a straight line.
∴ ∠XYZ + ∠ZYQ + ∠QYP = 180°
⇒ 64° + ∠ZYQ + ∠QYP = 180°
[∵ ∠XYZ = 64° (given)]
⇒ 64° + 2∠QYP = 180°
[YQ bisects ∠ZYP so, ∠QYP = ∠ZYQ]
⇒ 2∠QYP = 180° – 64° = 116°
⇒ ∠QYP = 116°/2 = 58°
∴ Reflex ∠QYP = 360° – 58° = 302°
Since ∠XYQ = ∠XYZ + ∠ZYQ
⇒ ∠XYQ = 64° + ∠QYP [∵∠XYZ = 64°(Given) and ∠ZYQ = ∠QYP]
⇒ ∠XYQ = 64° + 58° = 122° [∠QYP = 58°]
Thus, ∠XYQ = 122° and reflex ∠QYP = 302°.
Plz mrk as brainliest ❤