It is given that
Prove that:
Answers
It is given that
Squaring both sides,
Hence, it is proved.
Actually your question has some mistakes.
Its should be =>
QUESTION
a Sin B + b Cos B = c
-Prove that
( a CosB - b SinB )= √( a² + b² - c²)
ANSWER
Here we have =>
a sin B + b Cos B = c
=>(a Sin B + b Cos B)² = c²
{Squaring both sides}
=> a²Sin²B +b²Cos²B + 2a.b.Cos B.SinB = c²
-----------(i)
Now,let us assume=
a Cos B - b Sin B = d
On squaring both sides we get =>
(a Cos B - b Sin B)² = d²
=>a²Cos²B + b² Sin²B - 2a.b.Sin B.Cos B= d²
-----------(ii)
Now on adding equation (i) and equation (ii) we get =>
a²Sin²B + b²Cos²B - 2a.b.Sin B.Cos B + a²Cos²B + b² Sin²B - 2a.b.Sin B.Cos B =d² + c²
=> a²Sin²B + b²Cos²B + a²Cos²B + b²Sin²B = d² + c²
=>(Sin²B + Cos²B)a² + (Sin²B + Cos²B)b² = d² + c²
But we know that >
Sin²B + Cos²B = 1
Now on applying this ratio on the expression we get =>
a² + b² = d² + c²
=> a² + b² - c² = d²
=> d = √(a² + b² - c²)
=> a CosB - b SinB = √(a² + b² -c²)
Hence proved.
Remember
1)SinA =
2)CosA=
3)TanA=
4)SinA =
5)
6)TanA=
7)
8)
9)