It is given that∆ XYZ = 64°and XY is a produce to point P. A ray YQ bisects ∆ZYP. Draw a figure from the given information. Find∆XYQ and reflex∆QYP.
Answers
Answer: It is given that line YQ bisects ∠PYZ.
Hence,
∠QYP = ∠ZYQ
PX is straight line
sum of angle in linear pair always equal to 180°
∠XYZ + ∠ZYQ + ∠QYP = 180°
Give that so plug the value we get ∠ XYZ = 64°
And ∠QYP = ∠ZYQ
∠ 64° + 2∠QYP = 180°
∠2∠QYP = 180° − 64° = 116°
Divide by 2 we get
∠QYP = 58°
Also, ∠ZYQ = ∠QYP = 58°
Using angle of reflection
∠QYP = 360° − 58° = 302°
∠XYQ = ∠XYZ + ∠ZYQ
= 64° + 58°
= 122°
Question :-
It is given that ∠XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.
Answer :-
ie : XYP is a straight line.
∴ ∠XYZ + ∠ZYQ + ∠QYP = 180°
⇒ 64° + ∠ZYQ + ∠QYP = 180°
[∵ ∠XYZ = 64° (given)]
⇒ 64° + 2∠QYP = 180°
[YQ bisects ∠ZYP so, ∠QYP = ∠ZYQ]
⇒ 2∠QYP = 180° – 64° = 116°
⇒ ∠QYP = 116°/2 = 58°
∴ Reflex ∠QYP = 360° – 58° = 302°
Since ∠XYQ = ∠XYZ + ∠ZYQ
⇒ ∠XYQ = 64° + ∠QYP [∵∠XYZ = 64°(Given) and ∠ZYQ = ∠QYP]
⇒ ∠XYQ = 64° + 58° = 122° [∠QYP = 58°]
Thus, ∠XYQ = 122° and reflex ∠QYP = 302°.
Plz mrk as brainliest ❤