Math, asked by ankit5464, 1 year ago

it is maths question from trigonometry​

Attachments:

Answers

Answered by samrathag
0

Answer:

answer =2

Step-by-step explanation:

properties used:

i)sin^2 x+cos^2 x=1

ii)sec^2 x-tan^2 x=1

iii)cosec^2 x=1+cot^2 x

iv)function=(90 - cofunction) .....eg sinx=cos(90-x)..

=> -1/-1+1=2

Answered by pulakmath007
9

SOLUTION

TO DETERMINE

 \displaystyle \sf{ \frac{ { \cot}^{2}  {66}^{ \circ} -  { \sec}^{2} {24}^{ \circ}   }{ { \tan}^{2}  {43}^{ \circ} -  { \csc}^{2} {47}^{ \circ}   } +   { \sin}^{2}  {79}^{ \circ}  +   { \sin}^{2} {11}^{ \circ}   }

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric formula that

 \displaystyle \sf{1. \:  \:  \:  1 + { \cot}^{2}   \theta  =   { \csc}^{2}\theta}

 \displaystyle \sf{2. \:  \:  \:  1 + { \tan}^{2}   \theta  =   { \sec}^{2}\theta}

 \displaystyle \sf{3. \:  \:  \:  { \sin}^{2}   \theta   +    { \cos}^{2}\theta} = 1

EVALUATION

 \displaystyle \sf{ \frac{ { \cot}^{2}  {66}^{ \circ} -  { \sec}^{2} {24}^{ \circ}   }{ { \tan}^{2}  {43}^{ \circ} -  { \csc}^{2} {47}^{ \circ}   } +   { \sin}^{2}  {79}^{ \circ}  +   { \sin}^{2} {11}^{ \circ}   }

 \displaystyle \sf{  = \frac{ { \cot}^{2}  ({90}^{ \circ} - {24}^{ \circ}) -  { \sec}^{2} {24}^{ \circ}   }{ { \tan}^{2} ({90}^{ \circ} -  {47}^{ \circ}) -  { \csc}^{2} {47}^{ \circ}   } +   { \sin}^{2}  {79}^{ \circ}  +   { \sin}^{2}( {90}^{ \circ} - {79}^{ \circ})   }

 \displaystyle \sf{  = \frac{ { \tan}^{2}   {24}^{ \circ}-  { \sec}^{2} {24}^{ \circ}   }{ { \cot}^{2} {47}^{ \circ} -  { \csc}^{2} {47}^{ \circ}   } +   { \sin}^{2}  {79}^{ \circ}  +   { \cos}^{2}{79}^{ \circ}}

 \displaystyle \sf{  = \frac{  - 1 }{  - 1  } +   1}

 \displaystyle \sf{  = 1 +   1}

 \displaystyle \sf{  =2}

Note : In the above solution csc means cosec ( For latex )

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. prove that (1+cos18)(1+cos54)(1+cos126)(1+cos162)=1÷16

https://brainly.in/question/29235086

2. Find the value of cot (-3155°)

https://brainly.in/question/6963315

Similar questions