Math, asked by thatneonguy12, 11 months ago

It is not accepting my answer so I must be wrong

Attachments:

Answers

Answered by Anonymous
1

Answer:

❣ ANSWER ❣

✡ ROCKY HERE ✌

 \frac{ \csc(x)  -  \sin(x) }{ \cot(x) }  \\  =  \frac{ \frac{1}{ \sin(x)  -  \sin(x) } }{ \frac{ \cos(x) }{ \sin(x) } }  \\  =  \frac{ \frac{ 1 -   { \sin(x) }^{2}  )  }{ \sin(x) } }{  \frac{ \cos(x) }{ \sin(x) }  }  \\  =  \frac{1 -  { \sin(x) }^{2} }{ \sin(x) }  \times  \frac{ \sin(x) }{ \cos(x) }  \\  =  \frac{1 -  { \sin(x) }^{2} }{ \cos(x) }  \\  =   \frac{ { \cos(x) }^{2} }{ \cos(x) }  \\  =  \cos(x)

✴HAPPY TO HELP

Similar questions