It is now known that DNA is the genetic material as demonstrated by various scientists both old and new schools of thought. Following thsese scientists, describe how they came to the conclusion that DNA is indeed hereditary material and analyse their thoughts and conclude by stating your belief in this science of genetics, regarding inheritance.
Answers
Answer:
The Hershey–Chase experiments were a series of experiments conducted in 1952 by Alfred Hershey and Martha Chase that helped to confirm that DNA is genetic material.
HERE IS UR ANSWER
Our modern understanding of DNA's role in heredity has led to a variety of practical applications, including forensic analysis, paternity testing, and genetic screening. Thanks to these wide-ranging uses, today many people have at least a basic awareness of DNA.
It may be surprising, then, to realize that less than a century ago, even the best-educated members of the scientific community did not know that DNA was the hereditary material!
In this article, we'll look at some of the classic experiments that led to the identification of DNA as the carrier of genetic information.
The work of Gregor Mendel showed that traits (such as flower colors in pea plants) were not inherited directly, but rather, were specified by genes passed on from parents to offspring. The work of additional scientists around the turn of the 20th century, including Theodor Boveri, Walter Sutton, and Thomas Hunt Morgan, established that Mendel's heritable factors were most likely carried on chromosomes.
Scientists first thought that proteins, which are found in chromosomes along with DNA, would turn out to be the sought-after genetic material. Proteins were known to have diverse amino acid sequences, while DNA was thought to be a boring, repetitive polymer, due in part to an incorrect (but popular) model of its structure and composition^11start superscript, 1, end superscript.
Today, we know that DNA is not actually repetitive and can carry large amounts of information, as discussed further in the article on discovery of DNA structure. But how did scientists first come to realize that "boring" DNA might actually be the genetic material?
In 1928, British bacteriologist Frederick Griffith conducted a series of experiments using Streptococcus pneumoniae bacteria and mice. Griffith wasn't trying to identify the genetic material, but rather, trying to develop a vaccine against pneumonia. In his experiments, Griffith used two related strains of bacteria, known as R and S.