Math, asked by manjudevi09233, 18 days ago

it! Mand N are the midpoints of sides PQ and PR of APQR. QL || RN. Prove that LNRQ is a parallelogram. bus ABCD​

Answers

Answered by chavanshripriya
0

Step-by-step explanation:

Here, using the corollary of basic proportionally theorem which states that if a line passing through the two sides of the triangle cuts it proportionally, then the line is parallel to the third side. So,

(i)  QMPM=4.54=98

NRPN=4.54=98

∴  QMPM=NRPN

Thus, as MN cuts the sides PQ and PR proportionally, so MN∥QR.

∴   MN∥QR

(ii)  QMPM=1.28−0.160.16=1.120.16=71

NRPN=2.56−0.320.32=2.240.32=71

∴  QMPM=NRPN

Thus, as MN cuts the sides PQ and PR proportionally, so M

Similar questions