Math, asked by charanharitha, 10 months ago

It point (-3, a+4) lies on the
graph of equation 3x=y+17a,
then find the value
of a . Also find a solution y the equation.​

Answers

Answered by abhi569
10

Answer:

a = -13/18 and y = 59/18

Step-by-step explanation:

As point( - 3 , a + 4 ) lies of 3x = y + 17a, it must satisfy the given condition of ( x, y ) = ( - 3 , a + 4 ).

So,

⇒ 3x = y + 17a

⇒ 3( - 3 ) = ( a + 4 ) + 17a

⇒ - 9 = a + 4 + 17a

⇒ - 9 - 4 = 18a

⇒ - 13 = 18a

- 13/18 = a

      Hence,

             ⇒ y = a + 4

             ⇒ y = -13/18 + 4

             ⇒ y = ( -13 + 72 )/18

             ⇒ y = 59/18

Answered by Anonymous
20

Answer:

Given : Point (-3, a+4) lies on the graph of the equation 3x = y + 17a

✩ When Equation lies on the given points then it will must satisfy value of x and y.

So we can say : x = – 3⠀⠀&⠀⠀y = (a + 4)

\rule{90}{0.8}

\underline{\textbf{Value of a will be :}}

:\implies\sf 3x=y+17a\\\\\\:\implies\sf 3(-\:3)=(a+4)+17a\\\\\\:\implies\sf -\:9 = 18a + 4\\\\\\:\implies\sf -\:9 -4 = 18a\\\\\\:\implies\sf -\:13 =18a\\\\\\:\implies\underline{\boxed{\sf a = \dfrac{- \:13}{18} }}

\rule{170}{1.8}

\underline{\textbf{Value of y will be :}}

:\implies\sf y=a+4\\\\\\:\implies\sf y = \dfrac{ - \:13}{18} + 4\\\\\\:\implies\sf y = \dfrac{ - \:13 + 72}{18} \\\\\\:\implies\underline{\boxed{\sf y = \dfrac{59}{18}}}

Similar questions