Math, asked by barnitadey02, 2 months ago

it's a integration...plz solve it​

Attachments:

Answers

Answered by Asterinn
13

 \rm \longrightarrow  \displaystyle \int  \rm\frac{2x + 3}{3x - 4}   \:  dx

 \rm let \:  \: 3x - 4 = t \\   \rightarrow  \rm 3x = t + 4 \\ \rightarrow  \rm x =  \frac{t + 4}{3}  \\  \\ \rm Also,  \: 3 \: dx  = dt \\ \rm \rightarrow dx =  \dfrac{dt}{3}

\rm \longrightarrow  \displaystyle \int  \rm\dfrac{2  \bigg( \dfrac{t + 4}{3}  \bigg )+ 3}t \:   \dfrac{dt}{3}

\rm \longrightarrow \dfrac{1}{3} \displaystyle  \int  \rm\dfrac{2 \bigg( \dfrac{t + 4}{3}  \bigg )+ 3}t \:   dt

\rm \longrightarrow \dfrac{1}{3} \displaystyle  \int  \rm\dfrac{ \bigg( \dfrac{2t + 8}{3}  \bigg )+ 3}t \:   dt

\rm \longrightarrow \dfrac{1}{3} \displaystyle  \int  \rm\dfrac{ \bigg( \dfrac{2t + 8 + 9}{3}  \bigg )}t \:   dt

\rm \longrightarrow \dfrac{1}{3} \displaystyle  \int  \rm\dfrac{ \bigg( \dfrac{2t + 17}{3}  \bigg )}t \:   dt

\rm \longrightarrow \dfrac{1}{3} \displaystyle  \int  \rm\dfrac{ \bigg( {2t + 17} \bigg )}{3t }\:   dt

\rm \longrightarrow \dfrac{1}{9} \displaystyle  \int  \rm\dfrac{  {2t + 17} }{t }\:   dt

\rm \longrightarrow \dfrac{1}{9} \displaystyle  \int  \rm\dfrac{  {2t } }{t }\:    dt +\dfrac{1}{9} \displaystyle  \int  \rm \dfrac{  {17} }{t }\:    dt

\rm \longrightarrow \dfrac{2}{9} \displaystyle  \int  1 \: \rm  dt +\dfrac{17}{9} \displaystyle  \int  \rm \dfrac{ 1 }{t }\:    dt

\rm \longrightarrow \dfrac{2}{9} \displaystyle  t + \rm \dfrac{17}{9}ln t + c

Now, put t = 3x-4

\rm \longrightarrow \dfrac{2}{9} (3x - 4) + \rm \dfrac{17}{9}ln (3x - 4)+ c

Answer :-

\rm \longrightarrow \dfrac{2}{9} (3x - 4) + \rm \dfrac{17}{9}ln (3x - 4)+ c

or

\rm \longrightarrow \dfrac{2x}{3}  + \rm \dfrac{17}{9}ln (3x - 4)+ c

Similar questions