Math, asked by senguptaanshul, 2 months ago

It's a proving sum. ch- trigonometry and pls no spam​

Attachments:

Answers

Answered by amansharma264
37

EXPLANATION.

\implies \sqrt{\dfrac{1 - cos(A)}{1 + cos(A)} } \ = \dfrac{sin(A)}{1 + cos(A)}

As we know that,

Rationalize the L.H.S of the equation, we get.

\implies \sqrt{\dfrac{1 - cos(A)}{1 + cos(A)} \times \dfrac{1 + cos(A)}{1 +cos(A)}  }

\implies \sqrt{\dfrac{1 - cos^{2}(A) }{(1 + cos(A))^{2} } }

\implies \sqrt{\dfrac{sin^{2}(A) }{(1 + cos(A))^{2} } }

\implies \dfrac{sin(A)}{1 + cos(A)}

Hence proved.

                                                                                                                     

MORE INFORMATION.

(1) = sin²θ + cos²θ = 1.

(2) = 1 + tan²θ = sec²θ.

(3) = 1 + cot²θ = cosec²θ.

Answered by BrainlyFlash156
280

\huge\bf\underline{\red{A}\green{N}\orange{S}\pink{W}\purple{E}\blue{R}}

\dashrightarrow \sqrt{\dfrac{1 - cos(A)}{1 + cos(A)} } \ = \dfrac{sin(A)}{1 + cos(A)}

By taking L.H.S

\dashrightarrow \sqrt{\dfrac{1 - cos(A)}{1 + cos(A)} }

Now multiply it by

 {\dfrac{1 + cos(A)}{1 +cos(A)}}}

\dashrightarrow \sqrt{\dfrac{1 - cos(A)}{1 + cos(A)} \times \dfrac{1 + cos(A)}{1 +cos(A)}  }

\dashrightarrow \sqrt{\dfrac{1 - cos^{2}(A) }{(1 + cos(A))^{2} } }

\dashrightarrow \sqrt{\dfrac{sin^{2}(A) }{(1 + cos(A))^{2} } }

\dashrightarrow \dfrac{sin(A)}{1 + cos(A)}

Hence proved that,

\dashrightarrow \sqrt{\dfrac{1 - cos(A)}{1 + cos(A)} } \ = \dfrac{sin(A)}{1 + cos(A)}

                                                             

{\fcolorbox{blue}{black}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:☃️ Itz \:Dua \: Here☃️\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}}

Similar questions