Math, asked by krishnabhosle911, 2 months ago

It's maths plz help !¡!!!​

Attachments:

Answers

Answered by adiwan2
0

Answer:

Quotient is x^2 -x+3 and remainder is 3

Step-by-step explanation:

Attachments:
Answered by oluwaferanmioluwatis
0

Answer: =\frac{2x^3-9x^2+12x-7}{\left(x-2\right)^2}

Step-by-step explanation:

\frac{d}{dx}\left(\frac{x^3-3x^2+5x-3}{x-2}\right)

\mathrm{Apply\:the\:Quotient\:Rule}:\quad \left(\frac{f}{g}\right)^'=\frac{f\:'\cdot g-g'\cdot f}{g^2}

=\frac{\frac{d}{dx}\left(x^3-3x^2+5x-3\right)\left(x-2\right)-\frac{d}{dx}\left(x-2\right)\left(x^3-3x^2+5x-3\right)}{\left(x-2\right)^2}

\frac{d}{dx}\left(x^3-3x^2+5x-3\right)

\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'

=\frac{d}{dx}\left(x^3\right)-\frac{d}{dx}\left(3x^2\right)+\frac{d}{dx}\left(5x\right)-\frac{d}{dx}\left(3\right)

=3x^2-6x+5-0

\frac{d}{dx}\left(x-2\right)

(\mathrm{Apply\:the\:Sum/Difference\:Rule}:\quad \left(f\pm g\right)'=f\:'\pm g'  )

1-0 =1

\frac{\left(3x^2-6x+5\right)\left(x-2\right)-1\cdot \left(x^3-3x^2+5x-3\right)}{\left(x-2\right)^2}

=\frac{2x^3-9x^2+12x-7}{\left(x-2\right)^2}

Similar questions