Math, asked by prathu420, 1 year ago

it's trigonometry sum very easy plz try to solve it

Attachments:

Answers

Answered by tanujbhandari1pesawe
0
here your ans if its help mark me as a brilliant
Attachments:

prathu420: plz bro give me this image with better quality
Answered by siddhartharao77
2

Here, I am writing θ as A for better understanding!

Given:\frac{cotA + cosecA - 1}{cotA - cosecA + 1}

=>\frac{ \frac{cosA}{sinA}+\frac{1}{sinA}-1}{\frac{cosA}{sinA}-\frac{1}{sinA}+1}

=>\frac{\frac{cosA+1-sinA}{sinA}}{\frac{cosA-1 +sinA}{sinA}}

=>\frac{cosA+1-sinA}{cosA-1+sinA}

cosθ = 2 cos²(θ/2) - 1, sinθ = 2 sin(θ/2) cos (θ/2), cos θ = 1 - 2sin²(θ/2).

=>\frac{2cos^2\frac{A}{2}-1-2sin\frac{A}{2}cos\frac{A}{2}+1}{1-2sin^2\frac{A}{2}+2sin\frac{A}{2}cos\frac{A}{2}-1}

=>\frac{2cos^2\frac{A}{2}-2sin\frac{A}{2}cos\frac{A}{2}}{2sin\frac{A}{2}cos\frac{A}{2}-2sin^2\frac{A}{2}}

=>\frac{2(cos^2\frac{A}{2}-sin\frac{A}{2}cos\frac{A}{2})}{2(sin\frac{A}{2}cos\frac{A}{2}-sin^2\frac{A}{2})}

=>\frac{cos^2\frac{A}{2}-sin\frac{A}{2}cos\frac{A}{2}}{sin\frac{A}{2}cos\frac{A}{2}-sin^2\frac{A}{2}}

=>\frac{cos\frac{A}{2}(cos\frac{A}{2}-sin\frac{A}{2})}{sin\frac{A}{2}(cos\frac{A}{2}-sin\frac{A}{2})}

=>\frac{cos\frac{A}{2}}{sin\frac{A}{2}}

=>\boxed{cot\frac{A}{2}}


Hope this helps!

Similar questions