Math, asked by suhani5937, 2 months ago

it's urgent→
(1+sintheta-costheta/1+sintheta+costheta)²=1-costheta/1+costheta

do it fast!!!!!!!

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\: {\bigg(\dfrac{1 + sin\theta  - cos\theta }{1 + sin\theta  + cos\theta } \bigg) }^{2}

can be rewritten as

 \rm \: =  \: \: {\bigg(\dfrac{1 + sin\theta  - cos\theta }{(1 + sin\theta)  + cos\theta } \bigg) }^{2}

On rationalizing the denominator, we get

 \rm \: =  \: \: {\bigg(\dfrac{1 + sin\theta  - cos\theta }{(1 + sin\theta)  + cos\theta }  \times \dfrac{1 + sin\theta  - cos\theta }{(1 + sin\theta)  - cos\theta } \bigg) }^{2}

We know,

 \red{ \boxed{ \sf{ (x + y)(x - y)\:  =  \:  {x}^{2}  -  {y}^{2} }}}

 \rm \:  \:  =  \:  {\bigg(\dfrac{ {(1 + sin\theta  + cos\theta )}^{2} }{ {(1 + sin\theta )}^{2}  -  {cos}^{2}\theta  } \bigg) }^{2}

We know,

 \red{ \boxed{ \sf{(x + y + z)^{2}\:  =  {x}^{2} +  {y}^{2} +  {z}^{2} + 2xy + 2yz + 2zx}}}

 \rm \:  \:  =  \:  {\bigg(\dfrac{1 +  {sin}^{2}\theta  +  {cos}^{2}\theta  + 2sin\theta  - 2sin\theta cos\theta  - 2cos\theta   }{1 +  {sin}^{2}\theta  + 2sin\theta  -  {cos}^{2}\theta   } \bigg) }^{2}

We know,

 \red{ \boxed{ \sf{ {sin}^{2}x +  {cos}^{2} x  \:  =  \: 1}}}

 \rm \:  \:  =  \:  {\bigg(\dfrac{1 +({sin}^{2}\theta + {cos}^{2}\theta)+ 2sin\theta- 2sin\theta cos\theta  - 2cos\theta}{(1 -  {cos}^{2}\theta) +  {sin}^{2}\theta  + 2sin\theta  } \bigg) }^{2}

 \rm \:  \:  =  \:  {\bigg(\dfrac{1 +1+ 2sin\theta- 2sin\theta cos\theta  - 2cos\theta}{{sin}^{2}\theta +  {sin}^{2}\theta  + 2sin\theta  } \bigg) }^{2}

 \rm \:  \:  =  \:  {\bigg(\dfrac{2+ 2sin\theta- 2sin\theta cos\theta  - 2cos\theta}{ 2{sin}^{2}\theta  + 2sin\theta  } \bigg) }^{2}

 \rm \:  \:  =  \:  {\bigg(\dfrac{1+ sin\theta- sin\theta cos\theta  - cos\theta}{ {sin}^{2}\theta  + sin\theta  } \bigg) }^{2}

 \rm \:  \:  =  \:  {\bigg(\dfrac{(1+ sin\theta)- cos\theta( 1 + sin\theta)}{ {sin}\theta(1  + sin\theta) } \bigg) }^{2}

 \rm \:  \:  =  \:  {\bigg(\dfrac{(1+ sin\theta)( 1 - cos\theta)}{ {sin}\theta(1  + sin\theta) } \bigg) }^{2}

 \rm \:  \:  =  \:  {\bigg(\dfrac{ 1 - cos\theta}{ {sin}\theta } \bigg) }^{2}

 \rm \:  \:  =  \: \dfrac{ {(1 - cos\theta )}^{2} }{ {sin}^{2}\theta  }

 \rm \:  \:  =  \: \dfrac{ {(1 - cos\theta )}^{2} }{ 1 - {cos}^{2}\theta  }

 \rm \:  \:  =  \: \dfrac{ {(1 - cos\theta )}^{2} }{( 1 - {cos}\theta)(1 + cos\theta )}

 \rm \:  \:  =  \: \dfrac{1 - cos\theta }{1 + cos\theta }

Hence, Proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions