Math, asked by kk5996028, 9 months ago

it's urgent...................​

Attachments:

Answers

Answered by Darkrai14
2

Question 1

(103)³

Solution:-

(103)³ = (100+3)³

We know that,

(a+b)³ = ++3ab(a+b)

using this identity,

→(100+3)³ = (100)³+(3)³+3×100×3(100+3)

→(100+3)³ = 1,000,000+27+900(103)

→ (103)³ = 1,000,027+92,700

→(103)³=1,092,727

Answer:- 1,092,727.

Question 2

(99)²

(99)² = (100-1)²

Identity:-

(a-b)²=+-2ab

Solution:-

→(100-1)² = (100)² + (1)² - 2 × 100×1

→(100-1)² = 10,000+ 1 - 200

→(100-1)² = 10,001-200

→(100-1)² = 10,001-200

(100-1)²=9,801.

Answer:- (99)² = 9,801.

QUESTION 3:-

\rm \dfrac{9}{16}x^2-\dfrac{1}{9}y^2

\rm\implies\Bigg ( \dfrac{3}{4}x \Bigg )^2-\Bigg (\dfrac{1}{3}y\Bigg )^2

Identity:-

-b² = (a+b)(a-b)

Solution:-

\rm\implies\Bigg ( \dfrac{3}{4}x \Bigg )^2-\Bigg (\dfrac{1}{3}y\Bigg )^2

\rm\implies\Bigg ( \dfrac{3}{4}x + \dfrac{1}{3}y \Bigg )\Bigg ( \dfrac{3}{4}x -\dfrac{1}{3}y \Bigg ) \qquad\qquad ...[since, \ a^2-b^2 = (a+b)(a-b)]

\rm\implies\Bigg ( \dfrac{9x+4y}{12} \Bigg )\Bigg ( \dfrac{9x-4y}{12}  \Bigg )

\rm\implies \dfrac{9x+4y}{12} \times </p><p>\dfrac{9x-4y}{12}

\rm\implies \dfrac{(9x+4y)(9x-4y)}{12}

\rm\implies \dfrac{(9x)^2-(4y)^2}{12} \qquad\qquad ...[since , \ (a+b)(a-b)=a^2-b^2]

\rm\implies \dfrac{81x^2-16y^2}{12}

Similar questions