Math, asked by blueseasilent, 2 months ago

it's urgent please answer this quetsion ​

Attachments:

Answers

Answered by 12thpáìn
6

 \bf{ \mathcal Prove \:  that \:  \:  \bigg[ 1-\bigg \{1-(1-p²)^{-1}\bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

Solution

{ \mathcal{\:  \:  \mapsto \:  \: \bigg[ 1-\bigg \{1-(1-p²)^{-1}\bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}}

{ \sf\:  \:  \mapsto \:  \: \bigg[ 1-\bigg \{1-( {1}^{2} -p²)^{-1}\bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{\sf  \:  \:  \mapsto \:  \: \bigg[ 1-\bigg \{1- \{(1 + p)(1 - p) \}^{-1}\bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[ 1-\bigg \{1-  \dfrac{1}{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -  \bigg \{  \dfrac{(1 + p)(1 - p) - 1}{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -  \bigg \{  \dfrac{ {1}^{2} -  {p}^{2}  - 1}{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -  \bigg \{  \dfrac{    - p \times  - p  - 1 + 1}{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -  \bigg \{  \dfrac{       {p}^{2}   }{(1 + p)(1 - p)} \bigg\} ^{-1} \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1 -    \dfrac{     (1 + p)(1 - p)     }{ {p}^{2} }   \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[1  +    \dfrac{     (1  -  p)(1  +  p)     }{ {p}^{2} }   \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[ \dfrac{        {p}^{2}    +  {1}^{2} - {p}^{2}    }{ {p}^{2} }   \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: \bigg[ \dfrac{        1  }{ {p}^{2} }   \bigg]^{-\dfrac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \:  {p}  ^{2 \times  \frac{1}{2} } = p}

{  \sf\:  \:  \mapsto \:  \: p = p}

{\bf  \mathcal{ \:  \:  \mapsto \:  \: LHS = RHS }_{ \pink{_{_{_{_{ Proved }}}}}}}

Similar questions